本文介绍了一个已开发的Proof of Concept(POC)脚本,用于探索和熟悉OpenAI API的能力。
引言
这个Python脚本旨在自动化使用OpenAI的GPT-4语言模型生成回复。它还使用Selenium进行网页抓取,以检索在提示中指定的URL的内容。
与GPT-4协助的脚本设计
这个Python脚本的开发得到了AI ChatGPT-4的协助,展示了该工具作为编码创造过程中合作者的力量。
POC目标
目标是使用Python与OpenAI API进行实验,以发展我的技能。我不仅想向API提供一个提示语,而且希望通过将URL集成到提示语中来丰富这个提示语,如果需要的话。
- 演示OpenAI API的集成:在Python脚本环境中使用OpenAI API,以理解如何与GPT-4等高级语言模型进行交互。
- 使用网页抓取进行实验:使用Selenium动态检索网页内容,这是许多自动化应用的有用技能。
- 探索AI自动化的可能性:理解AI如何用于自动化和丰富如内容生成或回答问题等任务。
脚本的潜在应用
这个脚本可以作为涉及AI的更复杂项目的起点。它提供了结合网页抓取和AI所能实现的一瞥,并可能启发其他应用,如:
- 内容摘要的自动化。
- 用线上检索的信息丰富数据库。
- 创建定制的虚拟助手。
重要备注
- 此脚本是POC:它旨在用于教育和实验目的,而不是生产使用。
- 始终遵守API和网站的使用规则:在使用OpenAI API和抓取网站时,请确保遵守使用条款和隐私政策。
2024年9月28日更新:修复了OpenAI的脚本
自2024年1月以来,对脚本中使用的库进行了更新,包括Selenium和OpenAI API。初始脚本现已过时,需要进行调整以便与最新版本正确工作。
新的open-ai.py脚本代码
#!/usr/bin/env python3
import os
import sys
import argparse
import re
from openai import OpenAI
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
def get_web_content(url):
if not url:
return ""
try:
# Configure Chrome options
chrome_options = Options()
# Use ChromeDriverManager to automatically manage the ChromeDriver installation
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=chrome_options
)
# Make a request to the web page
driver.get(url)
# Retrieve the JavaScript content of the page
web_content = driver.execute_script("return document.documentElement.innerText")
# Close the browser when you're done
driver.quit()
return web_content if web_content else None
except Exception as e:
return None
def get_response(prompt, client):
urls = re.findall(r"(https?://\S+)", prompt)
for url in urls:
web_content = get_web_content(url)
if web_content:
# Replace the URL with the web content in the prompt
prompt = prompt.replace(url, web_content)
else:
return f"Erreur: Le contenu web pour {url} ne peut être récupéré."
try:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "Vous discutez avec un assistant AI utile et informé qui répond en français.",
},
{"role": "user", "content": prompt},
],
)
first_choice_message = response.choices[0].message
return first_choice_message.content
except Exception as e:
return f"Une erreur est survenue : {e}"
def main():
parser = argparse.ArgumentParser()
parser.add_argument("prompt", nargs="?", help="Le prompt contenant des URLs")
args = parser.parse_args()
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError(
"La clé API OPENAI_API_KEY n'est pas définie dans les variables d'environnement."
)
with OpenAI(api_key=openai_api_key) as client:
prompt = args.prompt or sys.stdin.read()
response = get_response(prompt, client)
print(response)
if __name__ == "__main__":
main()
使用示例
# Installation des dépendances si nécessaire :
pip install selenium
pip install openai
pip install webdriver_manager
# Définir la clé API OpenAI
export OPENAI_API_KEY="votre_clé_api"
# On rend le script exécutable
chmod 700 open-ai.py
# Exécution avec une URL à résumer
./open-ai.py "Fais moi un résumé de ce site stp : https://docs.mistral.ai/"
Mistral AI est un laboratoire de recherche spécialisé dans la création des meilleurs modèles open source au monde. Leur plateforme permet aux développeurs et entreprises de créer de nouveaux produits et applications en utilisant leurs modèles de langage (LLMs), qu'ils soient open source ou commerciaux.
### Types de modèles proposés
1. **Modèles généralistes de pointe**
- **Mistral Large** : Modèle de raisonnement pour des tâches complexes (version v2 sortie en juillet 2024).
- **Mistral NeMo** : Meilleur modèle multilingue open source (sorti en juillet 2024).
2. **Modèles spécialisés**
- **Codestral** : Modèle pour la génération de code (sorti en mai 2024).
- **Mistral Embed** : Modèle sémantique pour l'extraction de représentations de textes.
3. **Modèles de recherche**
- **Mistral 7b** : Premier modèle dense (sorti en septembre 2023).
- **Mixtral 8x7b** : Premier modèle à mélange d'experts sparse (sorti en décembre 2023).
- **Mixtral 8x22b** : Meilleur modèle open source à ce jour (sorti en avril 2024).
- **Mathstral 7b** : Premier modèle mathématique open source (sorti en juillet 2024).
- **Codestral Mamba** : Premier modèle mamba 2 open source (sorti en juillet 2024).
### APIs Mistral AI
Les APIs proposées permettent de :
- Générer du texte et visualiser des résultats partiels en temps réel.
- Générer du code, y compris le remplissage au milieu et l'achèvement de code.
- Extraire des embeddings pour représenter le sens des textes sous forme de listes de nombres.
- Connecter les modèles Mistral à des outils externes via des appels de fonctions.
- Affiner des modèles pour créer des versions personnalisées et spécialisées.
- Définir le format de réponse en JSON.
- Mettre en place des politiques de sécurité au niveau système des modèles Mistral.
Pour plus de détails, leur site propose une documentation et une communauté active sur différentes plateformes comme Discord et GitHub.
open-ai.py脚本代码(与最新版本的库不兼容)
以下是我创建的完整Python脚本:
#!/usr/bin/env python3
import os
import sys
import argparse
import re
from openai import OpenAI
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
def get_web_content(url):
if not url:
return ""
# Configure Chrome options
chrome_options = Options()
# Create a new browser instance with the configured options
driver = webdriver.Chrome(options=chrome_options)
# Make a request to the web page
driver.get(url)
# Retrieve the JavaScript content of the page
web_content = driver.execute_script("return document.documentElement.innerText")
# Don't forget to close the browser when you're done
driver.quit()
return web_content
def get_response(prompt, client):
urls = re.findall(r'(https?://\S+)', prompt)
for url in urls:
web_content = get_web_content(url)
if web_content:
# Remplacez l'URL par le contenu du web dans le prompt
prompt = prompt.replace(url, web_content)
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{"role": "system", "content": "Vous discutez avec un assistant AI utile et informé qui répond en français."},
{"role": "user", "content": prompt}
]
)
first_choice_message = response.choices[0].message
return first_choice_message.content
except Exception as e:
return f"Une erreur est survenue : {e}"
def main():
parser = argparse.ArgumentParser()
parser.add_argument("prompt", nargs="?", help="The prompt containing URLs")
args = parser.parse_args()
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError("La clé API OPENAI_API_KEY n'est pas définie dans les variables d'environnement.")
with OpenAI(api_key=openai_api_key) as client:
prompt = args.prompt or sys.stdin.read()
response = get_response(prompt, client)
print(response)
if __name__ == "__main__":
main()
脚本详细解释
导入模块
- os,sys:用于系统交互。
- argparse:管理命令行参数。
- re:允许正则表达式处理。
- OpenAI,webdriver:分别集成OpenAI API和通过Selenium的浏览器。
函数get_web_content
这个函数使用Selenium导航至给定的URL并检索其内容,这对于将网页内容集成到OpenAI提示语中至关重要。
函数get_response
它处理提示语中的URL,通过get_web_content
检索其内容,然后与OpenAI API交互,基于该内容获取回复。
main
块
脚本的核心,管理命令行参数,配置访问OpenAI API,并调用get_response
以产生和显示结果。 ## 使用示例
# Optionnel - Vous aurez peut être besoin d'installer les dépendances :
pip install selenium
pip install openai
# on ajoute dans l'environnement du shell la clé OpenAPI générée via https://platform.openai.com/api-keys
export OPENAI_API_KEY="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
# on rend le script executable
chmod 700 open-ai.py
# ensuite on pose la ou les questions que l'on souhaite et si besoin on précise une url avec du contenu à intégrer au prompt
./open-ai.py "fais moi un résumé de : https://platform.openai.com/docs/guides/prompt-engineering"
Le présent guide propose des stratégies et des tactiques pour obtenir de meilleurs résultats de modèles de langage de grande taille, comme le GPT-4.
Les méthodes décrites peuvent être combinées pour optimiser l'efficacité.
Il est encouragé d'expérimenter pour découvrir les méthodes les plus adéquates.
Si un modèle échoue à accomplir une tâche, essayer avec un modèle plus performant peut être bénéfique.
Voici un aperçu des stratégies abordées dans le guide :
1. **Écrire des instructions claires :** Soyez précis, adoptez des formats spécifiques, et fournissez des détails pour personnaliser les réponses.
2. **Fournir du texte de référence :** Donner des textes de référence peut aider le modèle à fournir des réponses avec moins de fabrications.
3. **Diviser les tâches complexes en sous-tâches :** Aborder une tâche complexe par étapes peut réduire les erreurs.
4. **Donner du temps au modèle pour "réfléchir" :** Encourager un raisonnement pas à pas avant de conclure aide à obtenir des réponses plus correctes.
5. **Utiliser des outils externes :** Combiner le modèle avec d'autres outils peut améliorer les résultats.
6. **Tester systématiquement les changements :** L'évaluation systématique peut aider à déterminer si un changement est bénéfique ou non.
Des exemples spécifiques de chacune de ces stratégies sont donnés pour illustrer comment elles peuvent être mises en œuvre.
Pour plus d'informations et inspirations, consultez le OpenAI Cookbook, des bibliothèques d'invitations et d'autres ressources externes.
# Sans url dans le prompt :
./open-ai.py "que sais tu faire ?"
En tant qu'assistant AI, je suis conçu pour réaliser une variété de tâches utiles. Voici quelques exemples de ce que je peux faire :
1. **Répondre à des questions**: Fournir des réponses sur un large éventail de sujets, incluant la science, la géographie, l'histoire, la culture, et plus.
2. **Aide à l'apprentissage**: Expliquer des concepts complexes ou aider à comprendre des matières académiques.
3. **Discussion et conseils**: Offrir une conversation amicale, donner des conseils ou simplement écouter.
4. **Traduction**: Traduire des mots, phrases ou textes d'une langue à une autre.
5. **Rédaction et édition de texte**: Aider à rédiger des emails, des lettres, des articles de blog ou à corriger la grammaire et l'orthographe.
6. **Recherche d'informations**: Trouver des données spécifiques, résumer des recherches ou compiler des informations.
7. **Assistance technique**: Fournir des informations de base sur le dépannage informatique ou électronique.
8. **Programmation et informatique**: Aider à comprendre des concepts de programmation ou résoudre des problèmes logiques simples.
9. **Assistance aux affaires**: Aider avec des problèmes de marketing, de gestion ou d'autres questions commerciales.
10. **Divertissement**: Raconter des histoires, des blagues, ou fournir des informations sur des films, des jeux vidéo, et d'autres formes de divertissement.
11. **Conseils de santé et de fitness**: Donner des informations de base et des conseils généraux sur le bien-être et l'exercice physique (mais pas des conseils médicaux professionnels).
12. **Cuisine et recettes**: Fournir des recettes et des conseils de cuisine.
13. **Voyage**: Aider à planifier des voyages, donner des informations touristiques et des conseils de voyage.
14. **Gestion de l'agenda et rappels**: Gérer un calendrier virtuel et rappeler des événements ou des tâches importantes.
Il est important de noter que mon but est de fournir des informations et de l'aide, mais je ne remplace pas les services professionnels comme l'assistance médicale, juridique, ou d'autres conseils professionnels spécialisés.
**这个文件已经使用gpt-4-1106-preview模型从fr版本翻译成zh语言。关于翻译流程的更多信息,请访问 https://gitlab.com/jls42/ai-powered-markdown-translator。**