Le script de traduction automatique, déjà renforcé par les capacités d’OpenAI et de Mistral AI, accueille une nouvelle innovation : l’intégration de Claude, le modèle d’intelligence artificielle de dernière génération conçu par Anthropic. Pour découvrir les résultats dans toutes les langues, je vous invite à visiter cette page : Traductions avec Anthropic.
L’Intégration de Claude
L’ajout de Claude, venant compléter OpenAI et Mistral AI dans le script de traduction, apporte une nouvelle fonctionnalité à l’outil. Cette extension renforce la palette de technologies d’IA au service des utilisateurs, illustrant la volonté d’améliorer constamment le script pour offrir des options de traduction améliorées et diversifiées.
Améliorations Apportées par l’Incorporation de Claude
- Compréhension Nuancée du Langage : Claude est conçu pour une compréhension profonde et nuancée des textes, promettant des traductions de haute qualité qui capturent fidèlement le sens et le ton du contenu original.
- Couverture Linguistique Étendue : Avec Claude, le script enrichit son support multilingue, promettant d’étendre davantage la portée des traductions disponibles à travers différentes langues.
- Choix Élargi pour les Utilisateurs : Cette mise à jour offre une plus grande flexibilité, permettant aux utilisateurs de choisir parmi OpenAI, Mistral AI, et désormais Claude, en fonction de leurs besoins spécifiques en traduction.
Innovations Techniques et Optimisations
L’ajout de Claude s’accompagne d’optimisations techniques visant à renforcer la performance et l’efficacité du script :
- Préservation des Formats et des Structures : Un soin particulier est apporté à la gestion des formats, assurant la fidélité des contenus traduits, notamment pour les documents techniques.
- Gestion Avancée des Fichiers de Sortie : Le script améliore le processus de création et d’organisation des fichiers traduits, optimisant ainsi le workflow des utilisateurs.
- Affinement des Prompts de Traduction : Les instructions de traduction ont été affinées pour garantir une fidélité encore plus grande au texte source, tirant parti de la capacité de Claude à comprendre des directives complexes.
Accès au Code Source et Collaboration
Le code source est accessible à tous ceux intéressés par les dernières avancées en traduction automatique. Le projet est hébergé sur GitLab, invitant la communauté à consulter le code, à l’utiliser pour leurs propres besoins, et à contribuer par des suggestions ou des améliorations. Pour explorer le projet et peut-être y apporter votre pierre, suivez ce lien : AI-Powered Markdown Translator.
#!/usr/bin/env python3
import os
import argparse
import time
from openai import OpenAI
import re
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
import glob
import anthropic
EXCLUDE_PATTERNS = ["traductions_"]
# Initialisation de la configuration avec les valeurs par défaut
DEFAULT_OPENAI_API_KEY = "votre-clé-api-openai-par-défaut"
DEFAULT_MISTRAL_API_KEY = "votre-clé-api-mistral-par-défaut"
DEFAULT_MODEL_OPENAI = "gpt-4-1106-preview"
DEFAULT_MODEL_MISTRAL = "mistral-medium"
DEFAULT_MODEL_CLAUDE = "claude-3-opus-20240229"
DEFAULT_SOURCE_LANG = "fr"
DEFAULT_TARGET_LANG = "en"
DEFAULT_SOURCE_DIR = "content/posts"
DEFAULT_TARGET_DIR = "traductions_en"
MODEL_TOKEN_LIMITS = {
"gpt-4-turbo-preview": 4096,
"gpt-4-1106-preview": 4096,
"gpt-4-vision-preview": 4096,
"gpt-4": 8192,
"gpt-4-32k": 32768,
"gpt-4-0613": 8192,
"gpt-4-32k-0613": 32768,
}
def segment_text(text, max_length):
"""
Divise un texte Markdown en segments ne dépassant pas la longueur maximale spécifiée,
en essayant de conserver des points de coupure naturels.
Args:
text (str): Texte Markdown à diviser.
max_length (int): Longueur maximale de chaque segment.
Returns:
list[str]: Liste des segments de texte Markdown.
"""
segments = []
while text:
if len(text) <= max_length:
segments.append(text)
break
segment = text[:max_length]
next_index = max_length
# Recherche de points de coupure naturels (fin de phrase, fin de paragraphe, fin de titre)
last_good_break = max(
segment.rfind(". "), segment.rfind("\n\n"), segment.rfind("\n#")
)
if last_good_break != -1:
next_index = last_good_break + 1
segments.append(text[:next_index])
text = text[next_index:]
return segments
def translate(text, client, args, use_mistral=False, use_claude=False, is_translation_note=False):
"""
Traduit un texte à l'aide de l'API OpenAI, Mistral AI ou Claude, selon les paramètres spécifiés.
Cette fonction segmente d'abord le texte pour s'assurer qu'il respecte la limite de tokens du modèle.
Elle utilise un argument optionnel 'is_translation_note' pour gérer différemment les notes de traduction.
Args:
text (str): Texte à traduire.
client: Objet client de l'API de traduction (OpenAI, Mistral AI ou Claude).
args: Objet argparse contenant les arguments de la ligne de commande.
use_mistral (bool): Si True, utilise l'API Mistral AI pour la traduction.
use_claude (bool): Si True, utilise l'API Claude pour la traduction.
is_translation_note (bool): Si True, le texte est une note de traduction.
Returns:
str: Texte traduit.
"""
model_limit = MODEL_TOKEN_LIMITS.get(args.model, 4096)
segments = segment_text(text, model_limit)
translated_segments = []
for segment in segments:
try:
prompt_message = ""
if is_translation_note:
prompt_message = "Directly translate to {} without any additions, ensuring that elements such as URLs, image paths and code blocks are not translated. Leave these elements unchanged. : '{}'".format(args.target_lang, segment)
else:
prompt_message = f"Perform a direct translation from {args.source_lang} to {args.target_lang}, without altering URLs. Begin the translation immediately without any introduction or added notes, and ensure not to include any additional information or context beyond the requested translation: '{segment}'. Strictly follow the source text without adding, modifying, or omitting elements that are not explicitly present."
if use_mistral:
messages = [ChatMessage(role="user", content=prompt_message)]
response = client.chat(model=args.model, messages=messages)
translated_text = response.choices[0].message.content.strip()
elif use_claude:
messages = [{"role": "user", "content": prompt_message}]
response = client.messages.create(model=args.model, max_tokens=4096, messages=messages)
# Extraire le texte de chaque ContentBlock dans la liste de réponses
translated_texts = [block.text.strip() for block in response.content] # Assurez-vous que .content est la liste des ContentBlock
translated_text = " ".join(translated_texts)
else:
messages = [
{"role": "system", "content": prompt_message},
{"role": "user", "content": segment},
]
response = client.chat.completions.create(
model=args.model, messages=messages
)
translated_text = response.choices[0].message.content.strip()
except Exception as e:
raise RuntimeError(f"Erreur lors de la traduction : {e}")
translated_segments.append(translated_text)
return " ".join(translated_segments)
def translate_markdown_file(
file_path,
output_path,
client,
args,
use_mistral,
use_claude,
add_translation_note=False,
force=False,
):
"""
Traduit un fichier Markdown en utilisant les modèles de traitement du langage naturel de OpenAI, Mistral AI ou Claude.
Args:
file_path (str): Chemin complet vers le fichier d'entrée.
output_path (str): Chemin complet vers le fichier de sortie.
client: Objet client de traduction.
args: Arguments supplémentaires pour la traduction.
use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
use_claude (bool): Indique si l'API Claude doit être utilisée pour la traduction.
add_translation_note (bool): Indique si une note de traduction doit être ajoutée.
force (bool): Indique si la traduction doit être forcée même si une traduction existe déjà.
Returns:
None. Le résultat de la traduction est écrit dans le fichier de sortie spécifié.
En cas d'échec, un message est imprimé pour indiquer une erreur et suggérer de relancer le traitement.
"""
try:
# Calcul des chemins relatifs pour un affichage plus lisible
relative_file_path = os.path.join(
args.source_dir, os.path.relpath(file_path, start=args.source_dir)
)
relative_output_path = os.path.join(
args.target_dir, os.path.relpath(output_path, start=args.target_dir)
)
print(f"Traitement du fichier : {relative_file_path}")
start_time = time.time()
# Lecture du contenu du fichier
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
if not content:
print(
f"Le fichier '{relative_file_path}' est vide, aucune traduction n'est effectuée."
)
return
# Extraction et remplacement des blocs de code pour les préserver pendant la traduction
regex = re.compile(
r"(?P<start>^```(?P<block_language>(\w|-)+)\n)(?P<code>.*?\n)(?P<end>```)",
re.DOTALL | re.MULTILINE,
)
code_blocks = [match.group("code") for match in regex.finditer(content)]
placeholders = [f"#CODEBLOCK{index}#" for index, _ in enumerate(code_blocks)]
for placeholder, code_block in zip(placeholders, code_blocks):
content = content.replace(code_block, placeholder)
# Traduction du contenu
translated_content = translate(content, client, args, use_mistral, use_claude)
# Restauration des blocs de code dans le contenu traduit
for placeholder, code_block in zip(placeholders, code_blocks):
translated_content = translated_content.replace(placeholder, code_block)
# Ajout de la note de traduction si nécessaire
if add_translation_note:
translation_note = translate(
"Ce document a été traduit de la version "
+ args.source_lang
+ " vers la langue "
+ args.target_lang
+ " en utilisant le modèle "
+ args.model
+ ". Pour plus d'informations sur le processus de traduction, consultez https://gitlab.com/jls42/ai-powered-markdown-translator",
client,
args,
use_mistral,
use_claude,
True,
)
translated_content += "\n\n**" + translation_note + "**\n\n"
# Écriture du contenu traduit dans le fichier de sortie
clean_output_path = os.path.normpath(output_path)
if os.path.exists(clean_output_path) and not force:
print(
f"Le fichier '{relative_output_path}' existe déjà, aucune traduction n'est effectuée."
)
return
with open(clean_output_path, "w", encoding="utf-8") as f:
f.write(translated_content)
end_time = time.time()
print(
f"Fichier '{relative_file_path}' traduit en {end_time - start_time:.2f} secondes et enregistré sous : {relative_output_path}"
)
except IOError as e:
print(f"Erreur lors du traitement du fichier '{relative_file_path}': {e}")
except Exception as e:
print(
f"Une erreur inattendue est survenue lors de la traduction du fichier '{relative_file_path}': {e}\n"
"Veuillez relancer le traitement pour ce fichier."
)
def is_excluded(path):
"""
Vérifie si le chemin donné correspond à l'un des motifs d'exclusion.
Cette fonction parcourt la liste des motifs d'exclusion définis dans EXCLUDE_PATTERNS.
Si l'un de ces motifs est trouvé dans le chemin fourni, la fonction renvoie True,
indiquant que le chemin doit être exclu du processus de traduction.
Args:
path (str): Le chemin du fichier ou du répertoire à vérifier.
Returns:
bool: True si le chemin correspond à l'un des motifs d'exclusion, False sinon.
"""
for pattern in EXCLUDE_PATTERNS:
if pattern in path:
return True
return False
def translate_directory(
input_dir, output_dir, client, args, use_mistral, use_claude, add_translation_note, force
):
"""
Traduit tous les fichiers markdown dans le répertoire d'entrée et ses sous-répertoires.
Args:
input_dir (str): Chemin vers le répertoire d'entrée.
output_dir (str): Chemin vers le répertoire de sortie.
client: Objet client de traduction.
args: Arguments supplémentaires pour la traduction.
use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
use_claude (bool): Indique si l'API Claude doit être utilisée pour la traduction.
add_translation_note (bool): Indique si une note de traduction doit être ajoutée.
force (bool): Indique si la traduction doit être forcée même si une traduction existe déjà.
Returns:
None
"""
input_dir = os.path.abspath(input_dir)
output_dir = os.path.abspath(output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_base_dir = os.path.basename(output_dir)
for root, dirs, files in os.walk(input_dir, topdown=True):
if is_excluded(root) or root.startswith(output_dir):
continue
if (
os.path.basename(root) == output_base_dir
and os.path.abspath(os.path.join(root, "..")) == input_dir
):
continue
for file in files:
if file.endswith(".md") and not is_excluded(file):
file_path = os.path.join(root, file)
base, _ = os.path.splitext(file)
output_file = f"{base}-{args.target_lang}-{args.model}.md" # Inversion du modèle et de la langue
relative_path = os.path.relpath(root, input_dir)
output_path = os.path.join(output_dir, relative_path, output_file)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Vérification si une traduction existe déjà, peu importe le modèle
target_language_files = glob.glob(
f"{output_dir}/**/{base}-{args.target_lang}*.md", recursive=True
) + glob.glob(
f"{output_dir}/**/{base}-*{args.target_lang}.md", recursive=True
)
existing_translation = any(
[os.path.exists(file) for file in target_language_files]
)
if not existing_translation or force:
translate_markdown_file(
file_path,
output_path,
client,
args,
use_mistral,
use_claude,
add_translation_note,
force,
)
print(f"Fichier '{file}' traité.")
elif not force:
print(
f"La traduction de '{file}' existe déjà, aucune action effectuée."
)
def main():
"""
Point d'entrée principal du script de traduction de fichiers Markdown.
Ce script traduit des fichiers Markdown d'une langue source à une langue cible en utilisant
les services de traduction de l'API OpenAI, Mistral AI ou Claude. Il prend en charge la segmentation
des textes longs et peut également ajouter une note de traduction en fin de document.
Arguments du script:
--source_dir: Répertoire contenant les fichiers Markdown à traduire.
--target_dir: Répertoire de destination pour les fichiers traduits.
--model: Modèle de traduction GPT à utiliser.
--target_lang: Langue cible pour la traduction.
--source_lang: Langue source des documents.
--use_mistral: Indicateur pour utiliser l'API Mistral AI pour la traduction.
--use_claude: Indicateur pour utiliser l'API Claude pour la traduction.
--add_translation_note: Indicateur pour ajouter une note de traduction au contenu traduit.
"""
parser = argparse.ArgumentParser(description="Traduit les fichiers Markdown.")
parser.add_argument(
"--force",
action="store_true",
help="Forcer la traduction même si une traduction existe déjà",
)
parser.add_argument(
"--source_dir",
type=str,
default=DEFAULT_SOURCE_DIR,
help="Répertoire source contenant les fichiers Markdown",
)
parser.add_argument(
"--target_dir",
type=str,
default=DEFAULT_TARGET_DIR,
help="Répertoire cible pour sauvegarder les traductions",
)
parser.add_argument(
"--model",
type=str,
help="Modèle GPT à utiliser pour la traduction, la valeur par défaut dépend de l'API sélectionnée",
)
parser.add_argument(
"--target_lang",
type=str,
default=DEFAULT_TARGET_LANG,
help="Langue cible pour la traduction",
)
parser.add_argument(
"--source_lang",
type=str,
default=DEFAULT_SOURCE_LANG,
help="Langue source pour la traduction",
)
parser.add_argument(
"--use_mistral",
action="store_true",
help="Utiliser l'API Mistral AI pour la traduction",
)
parser.add_argument(
"--use_claude",
action="store_true",
help="Utiliser l'API Claude d'Anthropic pour la traduction",
)
parser.add_argument(
"--add_translation_note",
action="store_true",
help="Ajouter une note de traduction au contenu traduit",
)
args = parser.parse_args()
if not os.path.isdir(args.source_dir):
raise ValueError(f"Le répertoire source spécifié n'existe pas : {args.source_dir}")
if not os.path.exists(args.target_dir):
os.makedirs(args.target_dir)
if args.use_mistral:
args.model = args.model if args.model else DEFAULT_MODEL_MISTRAL
api_key = os.getenv("MISTRAL_API_KEY", DEFAULT_MISTRAL_API_KEY)
if not api_key:
raise ValueError("Clé API Mistral non spécifiée.")
client = MistralClient(api_key=api_key)
elif args.use_claude:
args.model = args.model if args.model else DEFAULT_MODEL_CLAUDE
api_key = os.getenv("ANTHROPIC_API_KEY")
if not api_key:
raise ValueError("Clé API Claude non spécifiée.")
client = anthropic.Anthropic(api_key=api_key)
else:
args.model = args.model if args.model else DEFAULT_MODEL_OPENAI
openai_api_key = os.getenv("OPENAI_API_KEY", DEFAULT_OPENAI_API_KEY)
if not openai_api_key:
raise ValueError("Clé API OpenAI non spécifiée.")
client = OpenAI(api_key=openai_api_key)
translate_directory(
args.source_dir,
args.target_dir,
client,
args,
args.use_mistral,
args.use_claude,
args.add_translation_note,
args.force,
)
if args.use_mistral or args.use_claude:
try:
del client
except TypeError:
pass
if __name__ == "__main__":
main()
Conclusion
L’intégration de Claude aux moteurs OpenAI et Mistral AI dans le script de traduction automatique illustre un pas de plus vers l’excellence et l’innovation. En exploitant les forces uniques de chaque technologie d’IA, ce projet se distingue dans le domaine des solutions de traduction, garantissant une flexibilité et une qualité exceptionnelles pour répondre à une large gamme de besoins de traduction.