En este artículo, les hablaré sobre la evolución de mi script de traducción de blog utilizando la inteligencia artificial, con la integración de la tecnología Mistral AI. Para descubrir los resultados en todos los idiomas, los invito a visitar esta página: Traducciones con Mistral AI.

¿Por qué este Script?

El objetivo de mi script de traducción es hacer que mis artículos de blog sean accesibles en varios idiomas, automatizando su traducción. Imaginen un traductor inteligente capaz de leer un artículo en francés y restituirlo fielmente en inglés, español u otros idiomas, mientras conserva el formato original. Eso es lo que realiza mi script, explotando los avances más recientes de la IA.

Funcionalidades Clave del Script Inicial

  1. Traducción Automática: Utilización de la API de OpenAI o de Mistral AI para una traducción precisa.
  2. Preservación del Formato: El script mantiene el formato original, incluyendo los bloques de código y los enlaces.
  3. Multilingüe: Capacidad de traducir a varios idiomas.
  4. Compatibilidad con Markdown: Adaptado a archivos Markdown, frecuentemente utilizados en blogs.
  5. Automatización: Traducción de múltiples artículos a través de un solo comando.

Nuevas Funcionalidades con la Integración de Mistral AI

Integración de Mistral AI

Mistral AI es una plataforma avanzada de IA que propone servicios de procesamiento de lenguaje natural. Al integrar Mistral AI, he podido ampliar las capacidades de traducción y automatización de mi script, aprovechando otro potente recurso de IA. ¡Además, Mistral AI es una empresa francesa!

Segmentación Inteligente del Texto

El script ahora segmenta los textos largos para adaptarlos a los límites de tokens de los modelos de IA, permitiendo una gestión más eficiente de la traducción de grandes volúmenes de texto.

Adición de una Nota de Traducción

Una nueva funcionalidad permite agregar una nota de traducción al final de los documentos traducidos, informando a los lectores sobre el proceso de traducción.

Elección entre OpenAI y Mistral AI

El script ahora ofrece la flexibilidad de elegir entre OpenAI y Mistral AI para la traducción, según las necesidades específicas y las preferencias del usuario.

Gestión de Archivos y Directorios

Mejora de la gestión de archivos y directorios, permitiendo excluir ciertas partes del proceso de traducción si es necesario.

Código del Script

El script actualizado está disponible en Mi GitLab.

También encontrarán aquí su versión actual:

#!/usr/bin/env python3

import os
import argparse
import time
from openai import OpenAI
import re
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage

EXCLUDE_PATTERNS = ["traductions_"]

# Initialisation de la configuration avec les valeurs par défaut
DEFAULT_OPENAI_API_KEY = "votre-clé-api-openai-par-défaut"
DEFAULT_MISTRAL_API_KEY = "votre-clé-api-mistral-par-défaut"
DEFAULT_MODEL_OPENAI = "gpt-4-1106-preview"
DEFAULT_MODEL_MISTRAL = "mistral-medium"
DEFAULT_SOURCE_LANG = "fr"
DEFAULT_TARGET_LANG = "en"
DEFAULT_SOURCE_DIR = "content/posts"
DEFAULT_TARGET_DIR = "traductions_en"
MODEL_TOKEN_LIMITS = {
    "gpt-4-1106-preview": 4096,
    "gpt-4-vision-preview": 4096,
    "gpt-4": 8192,
    "gpt-4-32k": 32768,
    "gpt-4-0613": 8192,
    "gpt-4-32k-0613": 32768,
}


def segment_text(text, max_length):
    """
    Divise un texte Markdown en segments ne dépassant pas la longueur maximale spécifiée,
    en essayant de conserver des points de coupure naturels.

    Args:
        text (str): Texte Markdown à diviser.
        max_length (int): Longueur maximale de chaque segment.

    Returns:
        list[str]: Liste des segments de texte Markdown.
    """
    segments = []
    while text:
        if len(text) <= max_length:
            segments.append(text)
            break
        segment = text[:max_length]
        next_index = max_length

        # Recherche de points de coupure naturels (fin de phrase, fin de paragraphe, fin de titre)
        last_good_break = max(
            segment.rfind(". "), segment.rfind("\n\n"), segment.rfind("\n#")
        )
        if last_good_break != -1:
            next_index = last_good_break + 1

        segments.append(text[:next_index])
        text = text[next_index:]

    return segments


def translate(text, client, args, use_mistral=False, is_translation_note=False):
    """
    Traduit un texte en utilisant les services de traduction d'OpenAI ou Mistral AI.
    Cette fonction segmente d'abord le texte pour s'assurer qu'il respecte la limite de tokens du modèle.
    Elle utilise un argument optionnel 'is_translation_note' pour gérer différemment les notes de traduction.

    Args:
        text (str): Texte à traduire.
        client: Client de l'API de traduction (OpenAI ou Mistral AI).
        args: Arguments contenant les informations de configuration.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée (True) ou l'API OpenAI (False).
        is_translation_note (bool): Indique si le texte est une note de traduction, ce qui nécessite un traitement spécial.

    Returns:
        str: Texte traduit.
    """
    model_limit = MODEL_TOKEN_LIMITS.get(args.model, 4096)

    segments = segment_text(text, model_limit)
    translated_segments = []

    for segment in segments:
        try:
            prompt_message = ""
            if is_translation_note:
                prompt_message = f"Translate this exact sentence to {args.target_lang}, without any additions or explanations: '{segment}'"
            else:
                prompt_message = f"Please translate this text from {args.source_lang} to {args.target_lang}, and do not translate or change URLs, image paths, and code blocks (delimited by ```) : {segment}"

            if use_mistral:
                messages = [ChatMessage(role="user", content=prompt_message)]
                response = client.chat(model=args.model, messages=messages)
            else:
                messages = [
                    {"role": "system", "content": prompt_message},
                    {"role": "user", "content": segment},
                ]
                response = client.chat.completions.create(
                    model=args.model, messages=messages
                )
            translated_text = response.choices[0].message.content.strip()
        except Exception as e:
            raise RuntimeError(f"Erreur lors de la traduction : {e}")

        translated_segments.append(translated_text)

    return " ".join(translated_segments)


def add_translation_note(client, args, use_mistral):
    """
    Génère et traduit une note de traduction.

    Args:
        client: Objet client de traduction.
        args: Arguments contenant les informations de langue source et cible, et le modèle utilisé.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.

    Returns:
        str: Note de traduction traduite.
    """
    translation_note_src = f"Ce document a été traduit de la version {args.source_lang} par le modèle {args.model}."
    try:
        # Utiliser un prompt très spécifique pour Mistral AI
        if use_mistral:
            prompt_message = f"Translate this exact sentence to {args.target_lang}, without any additions or explanations: '{translation_note_src}'"
            messages = [ChatMessage(role="user", content=prompt_message)]
            response = client.chat(model=args.model, messages=messages)
            translated_note = response.choices[0].message.content.strip()
        else:
            # Pour OpenAI
            messages = [
                {
                    "role": "system",
                    "content": f"Translate this exact sentence to {args.target_lang}, without any additions or explanations: '{translation_note_src}'",
                },
                {"role": "user", "content": translation_note_src},
            ]
            response = client.chat.completions.create(
                model=args.model, messages=messages
            )
            translated_note = response.choices[0].essage.content.strip()

        return f"\n\n**{translated_note}**\n\n"
    except Exception as e:
        raise RuntimeError(f"Erreur lors de l'ajout de la note de traduction : {e}")


def translate_markdown_file(
    file_path, output_path, client, args, use_mistral, add_translation_note=False
):
    """
    Traduit un fichier Markdown en utilisant les modèles de traitement du langage naturel de OpenAI ou Mistral AI.

    Args:
        file_path (str): Chemin complet vers le fichier d'entrée.
        output_path (str): Chemin complet vers le fichier de sortie.
        client: Objet client de traduction.
        args: Arguments supplémentaires pour la traduction.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
        add_translation_note (bool): Indique si une note de traduction doit être ajoutée.

    Returns:
        None
    """
    try:
        # Calcul des chemins relatifs pour un affichage plus lisible
        relative_file_path = os.path.join(
            args.source_dir, os.path.relpath(file_path, start=args.source_dir)
        )
        relative_output_path = os.path.join(
            args.target_dir, os.path.relpath(output_path, start=args.target_dir)
        )

        print(f"Traitement du fichier : {relative_file_path}")
        start_time = time.time()

        # Lecture du contenu du fichier
        with open(file_path, "r", encoding="utf-8") as f:
            content = f.read()

        # Extraction et remplacement temporaire des blocs de code pour éviter leur traduction
        code_blocks = re.findall(
            r"(^```[a-zA-Z]*\n.*?\n^```)", content, flags=re.MULTILINE | re.DOTALL
        )
        placeholders = [f"#CODEBLOCK{index}#" for index, _ in enumerate(code_blocks)]
        for placeholder, code_block in zip(placeholders, code_blocks):
            content = content.replace(code_block, placeholder)

        # Traduction du contenu
        translated_content = translate(content, client, args, use_mistral)

        # Restauration des blocs de code dans le contenu traduit
        for placeholder, code_block in zip(placeholders, code_blocks):
            translated_content = translated_content.replace(placeholder, code_block)

        # Ajout de la note de traduction si nécessaire
        if add_translation_note:
            translation_note = translate(
                "Ce document a été traduit de la version "
                + args.source_lang
                + " par le modèle "
                + args.model
                + ".",
                client,
                args,
                use_mistral,
                True,
            )
            translated_content += "\n\n**" + translation_note + "**\n\n"

        # Écriture du contenu traduit dans le fichier de sortie
        clean_output_path = os.path.normpath(output_path)
        with open(clean_output_path, "w", encoding="utf-8") as f:
            f.write(translated_content)

        end_time = time.time()
        print(
            f"Fichier '{relative_file_path}' traduit en {end_time - start_time:.2f} secondes et enregistré sous : {relative_output_path}"
        )
    except IOError as e:
        print(f"Erreur lors du traitement du fichier '{relative_file_path}': {e}")
    except Exception as e:
        print(
            f"Une erreur inattendue est survenue lors de la traduction du fichier '{relative_file_path}': {e}"
        )


def is_excluded(path):
    """
    Vérifie si le chemin donné correspond à l'un des motifs d'exclusion.

    Cette fonction parcourt la liste des motifs d'exclusion définis dans EXCLUDE_PATTERNS.
    Si l'un de ces motifs est trouvé dans le chemin fourni, la fonction renvoie True,
    indiquant que le chemin doit être exclu du processus de traduction.

    Args:
        path (str): Le chemin du fichier ou du répertoire à vérifier.

    Returns:
        bool: True si le chemin correspond à l'un des motifs d'exclusion, False sinon.
    """
    for pattern in EXCLUDE_PATTERNS:
        if pattern in path:
            return True
    return False


def translate_directory(
    input_dir, output_dir, client, args, use_mistral, add_translation_note
):
    """
    Traduit tous les fichiers markdown dans le répertoire d'entrée et ses sous-répertoires.

    Args:
        input_dir (str): Chemin vers le répertoire d'entrée.
        output_dir (str): Chemin vers le répertoire de sortie.
        client: Objet client de traduction.
        args: Arguments supplémentaires pour la traduction.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
        add_translation_note (bool): Indique si une note de traduction doit être ajoutée.

    Returns:
        None
    """
    input_dir = os.path.abspath(input_dir)
    output_dir = os.path.abspath(output_dir)

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    output_base_dir = os.path.basename(output_dir)

    for root, dirs, files in os.walk(input_dir, topdown=True):
        if is_excluded(root) or root.startswith(output_dir):
            continue

        if (
            os.path.basename(root) == output_base_dir
            and os.path.abspath(os.path.join(root, "..")) == input_dir
        ):
            continue

        for file in files:
            if file.endswith(".md") and not is_excluded(file):
                file_path = os.path.join(root, file)
                base, _ = os.path.splitext(file)
                output_file = f"{base}-{args.model}-{args.target_lang}.md"
                relative_path = os.path.relpath(root, input_dir)
                output_path = os.path.join(output_dir, relative_path, output_file)

                os.makedirs(os.path.dirname(output_path), exist_ok=True)

                if not os.path.exists(output_path):
                    translate_markdown_file(
                        file_path,
                        output_path,
                        client,
                        args,
                        use_mistral,
                        add_translation_note,
                    )
                    print(f"Fichier '{file}' traité.")


def main():
    """
    Point d'entrée principal du script de traduction de fichiers Markdown.

    Ce script traduit des fichiers Markdown d'une langue source à une langue cible en utilisant
    les services de traduction de l'API OpenAI ou Mistral AI. Il prend en charge la segmentation
    des textes longs et peut également ajouter une note de traduction en fin de document.

    Arguments du script:
    --source_dir: Répertoire contenant les fichiers Markdown à traduire.
    --target_dir: Répertoire de destination pour les fichiers traduits.
    --model: Modèle de traduction GPT à utiliser.
    --target_lang: Langue cible pour la traduction.
    --source_lang: Langue source des documents.
    --use_mistral: Indicateur pour utiliser l'API Mistral AI pour la traduction.
    --add_translation_note: Indicateur pour ajouter une note de traduction au contenu traduit.
    """
    parser = argparse.ArgumentParser(description="Traduit les fichiers Markdown.")
    parser.add_argument(
        "--source_dir",
        type=str,
        default=DEFAULT_SOURCE_DIR,
        help="Répertoire source contenant les fichiers Markdown",
    )
    parser.add_argument(
        "--target_dir",
        type=str,
        default=DEFAULT_TARGET_DIR,
        help="Répertoire cible pour sauvegarder les traductions",
    )
    parser.add_argument(
        "--model", type=str, help="Modèle GPT à utiliser pour la traduction"
    )
    parser.add_argument(
        "--target_lang",
        type=str,
        default=DEFAULT_TARGET_LANG,
        help="Langue cible pour la traduction",
    )
    parser.add_argument(
        "--source_lang",
        type=str,
        default=DEFAULT_SOURCE_LANG,
        help="Langue source pour la traduction",
    )
    parser.add_argument(
        "--use_mistral",
        action="store_true",
        help="Utiliser l'API Mistral AI pour la traduction",
    )
    parser.add_argument(
        "--add_translation_note",
        action="store_true",
        help="Ajouter une note de traduction au contenu traduit",
    )

    args = parser.parse_args()

    if not os.path.isdir(args.source_dir):
        raise ValueError(
            f"Le répertoire source spécifié n'existe pas : {args.source_dir}"
        )
    if not os.path.exists(args.target_dir):
        os.makedirs(args.target_dir)

    if args.use_mistral:
        args.model = args.model if args.model else DEFAULT_MODEL_MISTRAL
        api_key = os.getenv("MISTRAL_API_KEY", DEFAULT_MISTRAL_API_KEY)
        if not api_key:
            raise ValueError("Clé API Mistral non spécifiée.")
        client = MistralClient(api_key=api_key)
    else:
        args.model = args.model if args.model else DEFAULT_MODEL_OPENAI
        openai_api_key = os.getenv("OPENAI_API_KEY", DEFAULT_OPENAI_API_KEY)
        if not openai_api_key:
            raise ValueError("Clé API OpenAI non spécifiée.")
        client = OpenAI(api_key=openai_api_key)

    translate_directory(
        args.source_dir,
        args.target_dir,
        client,
        args,
        args.use_mistral,
        args.add_translation_note,
    )

    if args.use_mistral:
        try:
            del client
        except TypeError:
            pass


if __name__ == "__main__":
    main()

¡Manténganse conectados para otras actualizaciones e innovaciones en el apasionante mundo de la IA!

Este documento fue traducido de la versión fr al idioma es utilizando el modelo claude-3-opus-20240229. Para obtener más información sobre el proceso de traducción, consulte https://gitlab.com/jls42/ai-powered-markdown-translator