After OpenAI, POC on Mistral AI the French competitor!

Introduction

This article explores a Python script developed as a Proof of Concept (POC) to interact with Mistral AI, a French alternative to OpenAI. It follows the principle of the script developed previously to interact with OpenAI.

Collaboration with GPT-4 for the development of the script

This project was a “collaboration” with ChatGPT-4, the latest version of OpenAI’s conversational AI. Together, we designed the Python script, benefiting from GPT-4’s ability to understand and generate code. This synergy between human expertise and artificial intelligence paves the way for new methods of development and innovation.

Script Objectives

The main intent was to experiment with the Mistral AI API in Python to develop my skills on the subject.

  • Testing Mistral AI : Explore the features of Mistral AI and understand how to use it effectively.
  • Automation with Python : Show how Python can be used to automate interactions with AI APIs.
  • Prompt Enrichment : Experiment with enriching prompts by incorporating web content retrieved via Selenium.

Script Potential

This script paves the way for various applications, including:

  • Enriched content generation : Dynamically enrich prompts with relevant web information.
  • Customized virtual assistance : Use AI to create personalized responses based on web content.
  • Improvement of automation tools : Integrate AI into existing tools for better performance.

Script Operation

The mistral-ai.py script uses the mistral-small model to generate responses. Here is how it works:

  1. Web Content Retrieval : Uses Selenium to extract content from URLs specified in the prompt.
  2. Response Generation : Sends the enriched prompt to Mistral AI to obtain a response.

Important Remarks

  • This script is a POC : It is intended for educational and experimental purposes, and not for production use.
  • Always respect API and website usage rules : When using the MistralAI API and web scraping, make sure to comply with the terms of use and privacy policies.

Here is the complete section with the code update and an example of use, integrated as in the original blog post:

Update from September 28, 2024: Script corrected for Mistral AI

Since the initial publication in January 2024, significant changes have taken place, particularly with the latest versions of the Mistral API and the libraries used (Selenium and ChromeDriver). The previous script is now obsolete and has been updated to ensure compatibility with these new versions. The new script uses the mistral-large-latest model and brings an automated management of ChromeDriver via webdriver_manager.

New Code of the mistral-ai.py Script

#!/usr/bin/env python3
import re
import sys
import os
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from mistralai import Mistral


def get_web_content(url):
    if not url:
        return ""

    try:
        # Configure Chrome options
        chrome_options = Options()

        # Use ChromeDriverManager to automatically manage the ChromeDriver installation
        driver = webdriver.Chrome(
            service=Service(ChromeDriverManager().install()), options=chrome_options
        )

        # Make a request to the web page
        driver.get(url)

        # Retrieve the JavaScript content of the page
        web_content = driver.execute_script("return document.documentElement.innerText")

        # Close the browser when you're done
        driver.quit()

        return web_content if web_content else None
    except Exception as e:
        return None


def get_response(question, client):
    urls = re.findall(r"(https?://\S+)", question)
    if urls:  # Vérifiez si une URL a été fournie
        for url in urls:
            web_content = get_web_content(url)
            if web_content:
                # Remplacez l'URL par le contenu du web dans le prompt
                question = question.replace(url, web_content)
            else:
                print(f"Erreur: Le contenu web pour {url} ne peut être récupéré.")
                sys.exit(1)  # Exit the script with an error code

    messages = [{"role": "user", "content": question}]
    response = client.chat.complete(model=model, messages=messages)

    for choice in response.choices:
        print(f"{choice.message.content}")


# Récupération de la question depuis l'argument de la ligne de commande
question = sys.argv[1] if len(sys.argv) > 1 else "Quelle est votre question ?"

api_key = os.getenv("MISTRAL_API_KEY", "YOUR_MISTRAL_API_KEY")
model = "mistral-large-latest"

try:
    client = Mistral(api_key=api_key)
    get_response(question, client)
except Exception as e:
    print(f"Une erreur est survenue : {e}")

try:
    del client
except TypeError:
    pass

Usage Example

# Optionnel - Installer les dépendances si nécessaire :
pip install selenium
pip install mistralai
pip install webdriver_manager

# Définir la clé API Mistral AI
export MISTRAL_API_KEY="votre_clé_api"

# on rend le script executable
chmod 700 mistral-ai.py

./mistral-ai.py "Fais moi un résumé de ce site stp : https://docs.mistral.ai/"
### Résumé du Site de Mistral AI

#### Introduction
Mistral AI est un laboratoire de recherche spécialisé dans la création des meilleurs modèles open source au monde. La Plateforme permet aux développeurs et aux entreprises de créer de nouveaux produits et applications grâce aux modèles de langage (LLMs) open source et commerciaux de Mistral.

#### Modèles de Langage de Mistral AI
Mistral AI propose des modèles généralistes, spécialisés et de recherche, tous à la pointe de la technologie, et dotés de capacités multilingues, de génération de code, de mathématiques et de raisonnement avancé.

##### Modèles Généralistes
- **Mistral Large**: Le modèle de raisonnement de haut niveau pour des tâches complexes, avec la version v2 sortie en juillet 2024.
- **Mistral NeMo**: Le meilleur modèle multilingue open source, sorti en juillet 2024.

##### Modèles Spécialisés
- **Codestral**: Le modèle de langage de pointe pour le codage, sorti en mai 2024.
- **Mistral Embed**: Le modèle sémantique pour l'extraction de représentations de textes.

##### Modèles de Recherche
- **Mistral 7b**: Le premier modèle dense, sorti en septembre 2023.
- **Mixtral 8x7b**: Le premier modèle sparse mixture-of-experts, sorti en décembre 2023.
- **Mixtral 8x22b**: Le meilleur modèle open source à ce jour, sorti en avril 2024.
- **Mathstral 7b**: Le premier modèle de mathématiques open source, sorti en juillet 2024.
- **Codestral Mamba**: Le premier modèle mamba 2 open source, sorti en juillet 2024.

#### Exploration des APIs de Mistral AI
Les APIs de Mistral AI permettent de développer des applications LLM via différentes fonctionnalités :
- **Génération de texte** : Permet le streaming et l'affichage en temps réel des résultats partiels du modèle.
- **Génération de code** : Facilite les tâches de génération de code, y compris le remplissage de texte et la complétion de code.
- **Embeddings** : Utile pour la RAG (Retrieval-Augmented Generation) où il représente la signification du texte sous forme de liste de nombres.
- **Appel de fonctions** : Permet aux modèles Mistral de se connecter à des outils externes.
- **Fine-tuning** : Permet aux développeurs de créer des modèles personnalisés et spécialisés.
- **Mode JSON** : Permet aux développeurs de définir le format de réponse en objet JSON.
- **Guardrailing** : Permet aux développeurs d'appliquer des politiques au niveau système des modèles Mistral.

#### Liens Utiles
- **Quickstart**
- **Documentation**
- **Contribution**
- **Communauté**
- **Discord**
- **GitHub**

#### Droits d'Auteur
Copyright © 2024 Mistral AI.

Code of the mistral-ai.py Script (obsolete with the latest versions of the libraries)

#!/usr/bin/env python3
import re
import sys
import os 
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage


def get_web_content(url):
    if not url:
        return ""

    # Configure Chrome options
    chrome_options = Options()

    # Create a new browser instance with the configured options
    driver = webdriver.Chrome(options=chrome_options)

    # Make a request to the web page
    driver.get(url)

    # Retrieve the JavaScript content of the page
    web_content = driver.execute_script("return document.documentElement.innerText")

    # Don't forget to close the browser when you're done
    driver.quit()

    return web_content

def get_response(question, client):
    urls = re.findall(r'(https?://\S+)', question)
    if urls:  # Vérifiez si une URL a été fournie
        for url in urls:
            web_content = get_web_content(url)
            if web_content:
                # Remplacez l'URL par le contenu du web dans le prompt
                question = question.replace(url, web_content)

    messages = [ChatMessage(role="user", content=question)]
    response = client.chat(model=model, messages=messages, safe_mode=False)

    for choice in response.choices:
        print(f"{choice.message.content}")


# Récupération de la question depuis l'argument de la ligne de commande
question = sys.argv[1] if len(sys.argv) > 1 else "Quelle est votre question ?"

api_key = os.getenv("MISTRAL_API_KEY", "YOUR_MISTRAL_API_KEY")
model = "mistral-small"

try:
    client = MistralClient(api_key=api_key)
    get_response(question, client)
except Exception as e:
    print(f"Une erreur est survenue : {e}")

try:
    del client
except TypeError:
    pass

Detailed Script Explanation

Importing Modules

  • os, sys : Used for interactions with the operating system.
  • argparse : Allows managing command-line arguments.
  • re : Module for processing regular expressions.
  • webdriver : Enables using Selenium to automate actions in a web browser. ### Function get_web_content
  • This function uses Selenium to navigate to a URL and retrieve its content.
  • It is essential for enriching prompts with information from the Internet.

Function get_response

  • Processes the URLs found in the prompt.
  • Retrieves their content via get_web_content.
  • Sends the enriched prompt to Mistral AI to obtain a response.

Block main

  • Entry point of the script.
  • Manages command-line arguments.
  • Initializes the Mistral AI client and processes the response.

Use of Mistral AI

  • The script interacts with the mistral-small model.
  • It sends the prompt, enriched by web content, to Mistral AI to obtain a relevant response.

This overview of the script provides an idea of its functioning and structure, enabling an understanding of how it uses Python, Selenium, and Mistral AI to automate and enrich interactions with AI.

Usage Examples

# Optionnel - Vous aurez peut être besoin d'installer les dépendances : 
pip install selenium
pip install mistralai

# Définir la clé API Mistral AI
export MISTRAL_API_KEY="votre_clé_api"

# on rend le script executable
chmod 700 mistral-ai.py

./mistral-ai.py "Résume en français ce contenu : https://platform.openai.com/docs/guides/prompt-engineering"

Ce guide partage des stratégies et tactiques pour obtenir de meilleurs résultats des grands modèles linguistiques (parfois appelés modèles GPT, tels que GPT-4). Les méthodes décrites peuvent être déployées en combinaison pour un effet plus important. L'expérimentation est encouragée pour trouver les méthodes qui fonctionnent le mieux pour vous.

Certains des exemples présentés fonctionnent actuellement uniquement avec le modèle le plus capable, gpt-4. En général, si vous constatez qu'un modèle échoue à une tâche et qu'un modèle plus capable est disponible, il vaut souvent la peine d'essayer à nouveau avec le modèle plus capable.

Des exemples de invites sont également fournis pour montrer ce que les modèles sont capables de faire.

Voici les six stratégies présentées dans le guide :

1. Rédiger des instructions claires
2. Fournir des détails dans votre requête pour obtenir des réponses plus pertinentes
3. Demander au modèle d'adopter une personnalité
4. Utiliser des délimiteurs pour indiquer distinctement les parties de l'entrée
5. Spécifier les étapes requises pour terminer une tâche
6. Fournir des exemples et spécifier la longueur de la sortie

Le guide décrit également des tactiques pour améliorer les performances des modèles, telles que la décomposition de tâches complexes en tâches plus simples, l'utilisation de références textuelles pour aider les modèles à fournir des réponses moins fabriquées, et l'utilisation de l\'exécution de code pour effectuer des calculs plus précis ou appeler des API externes.

Enfin, le guide présente des stratégies pour tester systématiquement les changements apportés aux systèmes en évaluant les sorties des modèles par rapport aux réponses standardisées.


# Sans url dans le prompt :
./mistral-ai.py "que sais tu faire ?"

Je suis capable de comprendre et de générer du langage naturel, ce qui me permet de répondre à une grande variété de questions, 
de traduire du texte d'une langue à une autre, de résumer du texte, de répondre à des demandes de manière polie, et bien plus encore. 
Je peux également effectuer des tâches telles que la recherche de informations sur le web, la programmation, la création de contenu 
et l'automatisation de tâches. 
Cependant, il est important de noter que mes compétences et connaissances sont limitées à ce qui m'a été appris et je suis dépendant 
de la qualité de l'information avec laquelle je suis entrainé.

This document has been translated from the fr version to the en language using the gpt-4-1106-preview model. For more information on the translation process, consult https://gitlab.com/jls42/ai-powered-markdown-translator.