With StoryPixAI, my goal was to create an interactive web application allowing users to generate children’s stories, enriched by images generated by artificial intelligence models. To achieve this, I used several AWS services such as Lambda, API Gateway, DynamoDB, S3, and Cognito for authentication. The infrastructure code is managed with Terraform, and the deployment is automated via GitLab CI. In this post, I unveil the behind-the-scenes of this exciting project, from technological choices to challenges encountered.
Introduction
As an experienced cloud infrastructure and DevOps architect, I have always been fascinated by new technologies and their potential to transform our daily lives. The emergence of generative AI sparked a growing curiosity in me, and I felt the need to dive into this burgeoning universe.
Thus, StoryPixAI was born, a personal project that allowed me to explore the infinite possibilities of AI to create personalized stories and magical illustrations for children. This project was an opportunity for me to wear the hats of a full-stack developer, a prompt engineer, a product owner, and even a UX/UI designer while sharing my passion for technology with my loved ones.
In this blog post, I will share my technological choices and the challenges faced during this exciting adventure.
But first, a little teaser!
To give you a taste of StoryPixAI’s potential, here are some stories automatically generated in multiple languages.
Each story is accompanied by illustrations, making the narrative even more immersive for children:
- French: Tom, Zoé, and the Kingdom of Argentor
- English: The Magical Quest of Princess Léa and the Giant Snail Thief
- Spanish: The Great Adventure of Roger and Coco the Clown
- German: The Crazy Lumberjack and the Magical Adventure
- Italian: The Girl and the Magical Unicorn in the Enchanted Forest
- Portuguese: The Enchanted Journey of Lucas and His Friends
AI at the Service of Creativity: An Experimental Journey
My adventure with StoryPixAI began with a simple Proof of Concept (PoC): a Lambda function that interacted with OpenAI to generate text and DALL-E to create images. This initial success encouraged me to go further and explore other AI models via AWS Bedrock.
GPT-4 and GPT-4-o: Agile Storytellers
From the start of the project, GPT-4 from OpenAI became an obvious choice for text generation. Its ability to understand the nuances of natural language and produce coherent and creative narratives allowed me to create captivating stories tailored to the age and interests of children. I was able to experiment with different writing styles, from fairy tales to space adventures, including animal stories and fantasy tales.
When GPT-4-0 was launched, I quickly integrated this new model into StoryPixAI. I was impressed by its increased generation speed, which significantly reduced the waiting time for generation, and by the notable improvement in the quality of the generated stories, with even smoother, more coherent, and imaginative narratives. GPT-4-0 has thus become a major asset for StoryPixAI, offering a faster and more enjoyable user experience.
DALL-E 3: the reference illustrator
While text generation models offered satisfactory results, the choice of an image generation tool proved to be more crucial. After numerous trials, DALL-E 3 emerged as the reference model for StoryPixAI. Its ability to create original, detailed illustrations perfectly suited to the stories generated by GPT-4 was a key factor in the project’s success.
Bedrock by AWS: the gateway to experimentation
Wanting not to limit myself to OpenAI, I used AWS’s Bedrock to easily integrate other generative AI models into StoryPixAI. This platform allowed me to test Claude by Anthropic and Mistral for text generation, and Stable Diffusion for image creation.
Although these models produced interesting results, I ultimately chose to focus on GPT-4 and GPT-4-0 for their speed and text generation quality, and on DALL-E 3 for its ability to produce illustrations perfectly suited to the stories. It is important to note that the prompt used to generate the images is largely developed by the text model itself, ensuring consistency between the narrative and the illustration.
The challenge of asynchronous API and DynamoDB
Once the PoC was validated, I set out to create an API to make StoryPixAI accessible via a web interface. This is where I encountered my first major challenge: the API Gateway timeout limitation. To overcome this constraint and enable the generation of longer and more complex stories, I had to implement an asynchronous architecture.
Amazon DynamoDB then came into play. I used this NoSQL database to store ongoing story generation tasks, along with their results once completed. Thanks to this approach, the API could return an immediate response to the user, who could then check the status of their request and retrieve the generated story once ready.
CORS and the user interface: obstacles to overcome
The implementation of the web interface was also a source of challenges. I had to familiarize myself with the subtleties of CORS (Cross-Origin Resource Sharing) to allow my frontend to communicate with the API. I also spent time enhancing the user experience by adding features such as the selection of AI models and image styles.
Prompting: an art to master
Throughout the development of StoryPixAI, I refined my prompting skills, the art of formulating the right requests to guide AI models. I learned to adapt my prompts based on the models used, the story parameters, and user expectations. This step was crucial to obtain quality results and ensure a satisfying user experience.
A robust and automated infrastructure on AWS
StoryPixAI is based on a serverless infrastructure hosted on Amazon Web Services (AWS), offering the ideal combination of flexibility, scalability, and cost optimization. This architecture, fully automated thanks to Terraform and GitLab CI/CD, allows for rapid and reliable application deployment.
AWS services at the heart of StoryPixAI
The architecture of StoryPixAI revolves around the following AWS services: * Amazon S3 (Simple Storage Service): Storage of the website’s static files (HTML, CSS, JavaScript) and generated stories along with their associated illustrations.
- Amazon CloudFront: A content delivery network (CDN) that accelerates the distribution of StoryPixAI’s content to users worldwide by caching it in geographically close locations.
- Amazon API Gateway: The secure entry point of the application. It manages user requests, ensures their authentication via Amazon Cognito, and routes them to the appropriate Lambda functions.
- AWS Lambda: Serverless functions that are the engine of StoryPixAI. They orchestrate story generation, image creation, asynchronous task management, and interaction with DynamoDB and other AWS services.
- Amazon DynamoDB: A flexible and high-performance NoSQL database used to store essential information for the application’s operation.
- Amazon Cognito: An identity and access management service that secures the application by allowing users to log in and controlling their permissions. It ensures that only authenticated users can access story generation features.
- Amazon Bedrock: A platform that simplifies access to and usage of generative AI models from various providers, such as Anthropic (Claude) and Stability AI (Stable Diffusion). Bedrock allows easy integration of these models into the application without having to manage their underlying infrastructure.
- Other AWS services: StoryPixAI also uses other AWS services, such as IAM (Identity and Access Management) for fine-grained access authorization management, CloudWatch for monitoring and logs (crucial for debugging and performance analysis), and Systems Manager Parameter Store (SSM Parameter Store) for storing sensitive information like API keys, ensuring the application’s security.
Terraform: automation at the service of infrastructure
To manage this complex infrastructure, I chose Terraform, an Infrastructure as Code (IaC) tool that allows describing the infrastructure as declarative code. Thanks to Terraform, I was able to automate the creation, modification, and destruction of AWS resources, ensuring a consistent, reproducible, and easy-to-manage environment. This significantly simplifies the deployment process and reduces the risk of human error.
GitLab CI/CD: seamless and smooth deployments
To ensure continuous and reliable deployment of StoryPixAI, I implemented a CI/CD pipeline (Continuous Integration / Continuous Deployment) on GitLab. This pipeline automates the testing, building, and deployment of the application with every source code change, allowing quick error detection and correction and delivering new features with confidence. This approach ensures that the application is always up to date and minimizes downtime.
This combination of AWS, Terraform, and GitLab CI/CD allowed me to build a robust, scalable, and easy-to-maintain infrastructure, leaving me more time to focus on the creative aspect of the project and improving the user experience.
Overall Architecture of the StoryPixAI Project
Before diving into the code, here is an overview of the application’s architecture:
- Static Site on S3: A static website hosted on an S3 bucket, accessible via CloudFront for global distribution.
- API Gateway: Exposes endpoints for story generation and status verification.
- Lambda Functions:
StoryPixAI.py
: Generates the story and associated images.status_checker.py
: Checks the generation status in DynamoDB.
- DynamoDB: Stores the status of generation tasks. S3: Stores the generated images and the resulting HTML pages.
- Cognito: Manages user authentication to secure the API.
Lambda Function StoryPixAI.py
General Overview
The StoryPixAI.py
function is the heart of the application. It is responsible for:
- Generating a story based on a user prompt.
- Creating detailed instructions to guide the AI model in generating the story.
- Extracting summaries for each scene or key element of the story.
- Generating images corresponding to these summaries.
- Combining the text and images into an HTML page.
- Storing the result in S3 and updating the status in DynamoDB.
Code Breakdown
Imports and Initial Configuration
import json
import boto3
import base64
import os
import re
from datetime import datetime
from openai import OpenAI
import logging
# Configuration du logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
generate_images = False
region_name = os.getenv("AWS_REGION", "us-east-1")
# Création d'un client SSM
ssm = boto3.client("ssm", region_name=region_name)
# Obtention de la clé API OpenAI depuis le SSM
parameter = ssm.get_parameter(Name="/openaikey", WithDecryption=True)
In this section, I import the necessary modules, configure the logger for debugging, and retrieve the OpenAI API key stored in AWS Systems Manager Parameter Store (SSM). This secures the key and avoids storing it in clear text in the code.
Utility Functions
Tag Correction
def correct_resume_tags(text):
# Corrige les balises 'résumé', 'resume', 'titre' et leurs variantes en 'resume' et 'titre' respectivement dans le texte généré.
This function ensures that the tags used to delimit summaries and titles are uniform. This is crucial for the correct extraction of summaries later.
Summary Extraction
def extract_summaries(text):
# Extrait les résumés du texte en utilisant des balises spécifiques.
It uses regular expressions to extract sections of text delimited by [resume]
and [end_resume]
. These summaries will serve as prompts for image generation.
Image Instructions Generation
def generate_image_instructions(prompt, style, language):
# Génère les instructions pour la création d'images.
This function formats the prompt to guide the image generation model by including the style and language.
DynamoDB Update
def update_dynamodb(request_id, status, result_url=None):
# Met à jour une entrée dans la table DynamoDB avec l'ID de la requête, le statut et l'URL du résultat.
It updates the TaskStatus
table to track the generation state, which is essential for the status_checker.py
function.
In-Depth Analysis of generate_story_instructions
The generate_story_instructions
function is the core of the project. It generates a set of detailed instructions that will be passed to the AI model to guide the story generation.
def generate_story_instructions(prompt, language):
"""
Génère les instructions pour créer une histoire captivante pour enfants.
Args:
prompt (str): Texte source pour inspirer l'histoire.
language (str): Langue de l'histoire.
Returns:
str: Instructions formatées pour la génération de l'histoire.
"""
language_description = get_language_description(language)
return f"""
Crée une histoire unique de 1000 à 1500 mots, captivante et riche en descriptions visuelles pour enfants uniquement dans la langue "{language_description}", inspirée par : "{prompt}". Cette histoire doit mêler aventure, magie, et enseigner des valeurs importantes telles que l'amitié, le courage, la persévérance, l'empathie, et la gentillesse.
L'histoire peut aborder des thèmes comme : l'amitié entre un enfant humain et un animal merveilleux, la découverte d'un monde magique caché, un long voyage vers une contrée enchantée, un enfant qui découvre qu'il/elle possède des pouvoirs magiques spéciaux et doit apprendre à les maîtriser, une quête pour sauver une créature légendaire en danger, un voyage à travers des royaumes féeriques pour briser un sortilège ancien, une aventure sous-marine dans un monde marin peuplé de sirènes et de créatures fantastiques, une mission pour réunir des objets magiques dispersés afin d'empêcher un grand cataclysme, une compétition amicale entre enfants dotés de capacités extraordinaires dans une école de sorcellerie, etc.
L'histoire peut également explorer : l'acceptation de soi à travers un personnage unique comme un enfant métamorphe, la découverte d'une ancienne civilisation perdue et de ses secrets, une épopée pour retrouver des parents disparus dans un monde parallèle, une lutte contre les forces des ténèbres menaçant d'engloutir un royaume enchanté, etc.
N'hésites pas à combiner plusieurs de ces idées pour créer une trame narrative riche et captivante. Tu peux aussi t'inspirer de contes ou légendes traditionnels et leur donner un nouvel éclairage fantastique adapté aux enfants.
Raconte l'histoire au présent pour une immersion maximale.
Instructions spécifiques :
- Utilise des phrases courtes et simples, adaptées pour des enfants de moins de 10 ans.
- Intègre des dialogues dynamiques et réalistes pour rendre l'histoire vivante.
- Choisis des mots simples pour une meilleure compréhension par de jeunes lecteurs.
- Crée des personnages diversifiés en termes d'âge, de genre, d'origine ethnique et de capacités. Assure-toi que l'apparence des personnages (cheveux, yeux, taille, etc.) est précisée au niveau du résumé si jamais ils doivent y apparaître pour être cohérent avec le texte de l'histoire.
- Attribue des traits de personnalité uniques, des intérêts, des peurs et des rêves à chaque personnage pour une caractérisation approfondie.
- Développe les personnages et leurs relations tout au long de l'histoire en montrant leurs interactions, leurs moments de partage et leur évolution.
- Crée des conflits émotionnels et intellectuels, au-delà des défis physiques.
- Décris en détail les défis physiques et les actions des personnages pour les surmonter. Par exemple, lorsqu'ils traversent la forêt, mentionne les branches qui les gênent, les racines sur lesquelles ils trébuchent, la végétation dense qu'ils doivent écarter. Montre leur fatigue, leurs efforts pour avancer, les émotions qu'ils ressentent face à ces difficultés.
- Fais échouer les personnages principaux à un moment donné. Montre comment ils gèrent cet échec et essaient à nouveau. Décris en détail leurs sentiments de doute, de frustration ou de découragement, et comment ils puisent dans leur détermination et leur amitié pour surmonter cet obstacle. Assure-toi que l'échec est significatif et impacte réellement la progression de l'histoire.
- Crée des conflits entre les personnages principaux, ou entre les personnages principaux et les personnages secondaires.
- Ajoute des rebondissements et des défis supplémentaires pour maintenir l'intérêt des jeunes lecteurs. Décris en détail la réaction des personnages face à ces rebondissements, leurs émotions, leurs doutes et leurs efforts pour s'adapter à la nouvelle situation.
- Résous les conflits de manière créative et non violente, en mettant l'accent sur le pouvoir de la communication et de la coopération.
- Développe les antagonistes en leur donnant des motivations claires, des traits de personnalité distincts et des capacités redoutables qui les rendent réellement menaçants pour les héros. Décris en détail leurs actions pour contrecarrer ou mettre en échec les héros à plusieurs reprises au cours de l'histoire. Montre comment leur présence et leurs actions sèment le doute, la peur ou le découragement chez les héros avant qu'ils ne parviennent à les surmonter.
- Assure-toi que le récit comporte une structure narrative claire avec une introduction captivante, de l'action, des conflits, et une résolution.
- Ajoute un objectif clair pour les personnages à atteindre et un accomplissement significatif à la fin de l'histoire.
- Inclue des moments de réflexion ou d'émotion pour permettre aux lecteurs de se connecter aux personnages et à leurs aventures.
- Varie les interactions entre les personnages pour éviter les répétitions et maintenir l'intérêt.
- Maintiens un bon rythme dans l'histoire en alternant des scènes d'action, de réflexion et d'émotion. Ajoute des éléments de suspense pour maintenir l'intérêt des jeunes lecteurs.
- Utilise abondamment des descriptions visuelles riches en couleurs, en textures et en formes pour stimuler l'imagination des enfants et créer un monde immersif.
- Inclue des descriptions sensorielles pour enrichir l'expérience narrative (sons, odeurs, textures).
- Chaque personnage doit avoir une motivation claire et des traits de caractère distincts.
- Assure-toi que chaque chapitre se termine par un cliffhanger ou une question ouverte pour maintenir l'intérêt des lecteurs.
- Ajoute des éléments éducatifs subtils (faits scientifiques, connaissances culturelles) pour enrichir l'histoire sans alourdir le récit.
- Enrichis les descriptions sensorielles pour permettre aux lecteurs de vraiment "voir", "entendre" et "ressentir" l'environnement des personnages.
- Personnalise l'histoire avec des noms ou des éléments familiers pour une connexion émotionnelle plus forte.
- Intègre des questions de réflexion et d'interaction pour engager les enfants.
- Ajoute des éléments d'humour et des jeux de mots pour rendre l'histoire amusante.
- Utilise des illustrations mentales vives et détaillées pour stimuler l'imagination.
- Intègre une leçon morale ou un message éducatif de manière naturelle dans le récit.
- Intègre des messages positifs et encourageants dans tes histoires, comme l'importance de croire en soi, de poursuivre ses rêves et de surmonter les obstacles.
- Ajoute des éléments d'humour et de légèreté dans tes histoires pour les rendre plus amusantes et agréables à lire pour les enfants.
- Intègre des éléments éducatifs dans tes histoires de manière subtile et ludique, comme des métaphores pour enseigner des concepts scientifiques ou des voyages dans différents pays pour enseigner la géographie et les cultures.
- Ajoute des éléments interactifs dans tes histoires, comme des questions aux enfants, des choix qui influencent l'histoire, ou des petits défis ou jeux à réaliser.
Ajoute des difficultés et des obstacles significatifs pour rendre l'histoire plus engageante et permettre aux héros de montrer leur courage et leur ingéniosité :
- Développe les antagonistes en leur donnant des motivations claires, des traits de personnalité distincts et des capacités redoutables qui les rendent réellement menaçants pour les héros. Décris en détail leurs actions pour contrecarrer ou mettre en échec les héros à plusieurs reprises au cours de l'histoire. Montre comment leur présence et leurs actions sèment le doute, la peur ou le découragement chez les héros avant qu'ils ne parviennent à les surmonter.
- Décris chaque affrontement au niveau quasi "temps réel", avec les actions, réactions, émotions, blessures, etc. détaillées pas à pas, presque comme si on y assistait. Intègre des éléments de surprise, de retournements inattendus au cours de ces affrontements pour augmenter le suspense. Montre comment les capacités et l'ingéniosité des antagonistes poussent les héros dans leurs derniers retranchements.
- Lorsque les héros échouent, prends le temps de décrire en détail leurs émotions négatives (déception, frustration, colère, tristesse, etc.) et leurs doutes intérieurs. Montre qu'ils remettent en question leur capacité à poursuivre leur quête à la suite de ces échecs cuisants. Fais en sorte qu'ils aient besoin d'un véritable déclic intérieur, motivé par l'amitié ou leurs valeurs, pour se relever et persévérer. Montre comment cela impacte leurs relations entre eux (reproches, disputes, tensions, ou au contraire un élan de solidarité).
- Décris les affrontements physiques ou psychologiques étape par étape, en montrant les actions, réactions et émotions ressenties de part et d'autre. N'hésite pas à inclure des blessures, de la souffrance ou de la peur pour les héros lors de ces affrontements acharnés. Fais en sorte que la victoire des héros ne soit jamais acquise d'avance et nécessite des sacrifices ou des prises de risque de leur part.
- Crée des situations où les héros doivent collaborer et utiliser leurs compétences spécifiques pour réussir.
- Intègre des moments de doute ou de découragement pour montrer la persévérance des héros. Décris leurs luttes internes et comment ils trouvent la force de continuer. Fais en sorte que les héros aient besoin d'un véritable déclic intérieur, motivé par l'amitié ou leurs valeurs, pour se relever et persévérer.
- Ajoute des moments où l'amitié ou la confiance entre les héros est mise à rude épreuve par les difficultés rencontrées. Montre comment ils doivent surmonter leurs doutes, leur colère ou leur rancune les uns envers les autres pour rester soudés. Décris leurs prises de conscience, leurs excuses et leur cheminement pour renouer des liens forts malgré l'adversité.
- Place les héros dans des situations où ils doivent faire un choix difficile qui aura des conséquences douloureuses (abandonner un compagnon, renoncer à un rêve, etc.). Montre leur dilemme intérieur, leur déchirement avant de faire ce choix douloureux pour un plus grand bien. N'aie pas peur d'inclure des pertes, des renoncements ou des traumatismes marquants issus de ces choix cornéliens.
- Fais en sorte que les personnages apprennent et grandissent à travers les difficultés qu'ils rencontrent.
- Ajoute des rebondissements inattendus qui changent la direction de l'histoire et maintiennent l'intérêt des lecteurs. Décris en détail la réaction des personnages face à ces rebondissements, leurs émotions, leurs doutes et leurs efforts pour s'adapter à la nouvelle situation.
- Fais en sorte que les antagonistes infligent de véritables blessures physiques et/ou psychologiques aux héros au cours des affrontements. Décris ces blessures, la douleur ressentie, l'impact sur leur moral et leurs capacités à avancer. Montre leur résolution, leur courage pour continuer malgré ces handicaps.
- Assure-toi que chaque défi est pertinent pour l'histoire et contribue au développement des personnages.
- Décris en détail chaque énigme ou défi rencontré par les personnages. Par exemple, si les enfants doivent résoudre des énigmes chantées par les vents, précise le contenu de ces énigmes et la manière dont les enfants trouvent les réponses grâce à leur persévérance ou à l'aide de personnages secondaires.
- Lorsque les personnages surmontent un obstacle, montre le processus complet de leurs tentatives, incluant les échecs et les efforts qu'ils font avant de réussir. Par exemple, détaille comment ils essaient plusieurs méthodes pour résoudre une énigme ou surmonter un défi avant de finalement trouver la solution.
- Intègre des dialogues et des interactions entre les personnages et les gardiens ou les antagonistes qui posent des défis. Par exemple, si un enfant des vents protège un objet précieux, décris la conversation où il teste la patience des héros et les réactions des enfants face à ce test.
- Ajoute des descriptions des émotions et des pensées des personnages lorsqu'ils font face à des épreuves difficiles, montrant leur détermination, leurs doutes, et comment ils surmontent ces sentiments pour réussir.
- Assure-toi que chaque défi est clairement expliqué avec des indices et des solutions logiques que les enfants peuvent comprendre et suivre. Par exemple, spécifie les indices que les héros utilisent pour résoudre les énigmes et comment ces indices les mènent à la solution.
IMPORTANT : Ne traduisez ni modifiez pas les balises suivantes :
[titre]Ton titre ici[end_titre] (balises de titre)
[resume] et [end_resume] (balises de résumé)
N'ajoutez aucune autre balise que celles spécifiées ci-dessus.
Voici comment structurer les descriptions visuelles inspirées par : "{prompt}" :
- Commence chaque description avec la balise [resume] et finis avec la balise [end_resume]. Ne traduisez ni modifiez pas ces balises.
- Les descriptions doivent se concentrer exclusivement sur les éléments visuels sans inclure d'actions ou de dialogues des personnages.
- Chaque élément clé mentionné dans le prompt initial doit être décrit de manière unique et détaillée.
- Ne mentionne chaque élément (personnage, animal, lieu, objet clé) qu'une seule fois dans les descriptions visuelles. Une fois qu'un élément a été décrit, ne le mentionne plus dans les descriptions suivantes, même indirectement.
- Utilise des descriptions riches en couleurs, en textures et en formes pour stimuler l'imagination visuelle.
- Inclue des éléments fantastiques, magiques ou surréalistes pour rendre les scènes plus intéressantes et mémorables.
- Veille à ce que chaque description soit suffisamment détaillée pour permettre la création d'une illustration complète.
Exemple de structure de descriptions visuelles (ces exemples sont seulement pour référence, ne les utilisez pas tels quels dans l'histoire) :
[resume]Un koala super sympa avec une fourrure douce et grise, des yeux pétillants et un sourire amical. Il est assis sur une branche d'eucalyptus, grignotant des feuilles et observant son environnement avec curiosité.[end_resume]
[resume]Un escargot très méchant avec une coquille noire et luisante, et des yeux perçants qui semblent voir à travers tout. Il se déplace lentement mais de manière menaçante, laissant derrière lui une traînée de bave visqueuse.[end_resume]
[resume]Un arbre magique avec des feuilles d'un bleu profond qui brillent comme des étoiles. Des oiseaux de toutes les couleurs chantent autour des branches, ajoutant une mélodie enchantée à l'atmosphère mystique.[end_resume]
Assure-toi que chaque description visuelle est riche, détaillée et entièrement nouvelle, sans aucune répétition d'éléments précédents. Évite d'utiliser les exemples fournis ci-dessus et crée des descriptions fraîches pour chaque scène.
La conclusion de l'histoire doit renforcer les thèmes de l'aventure et de l'amitié avec une touche plus percutante, et être accompagnée d'une dernière description visuelle marquante.
[resume]Visualise le chemin de retour à travers un paysage unique et magique, différent pour chaque histoire. Par exemple, un pont arc-en-ciel, un sentier lumineux sous une pluie d'étoiles filantes, des pas dans le sable avec un soleil couchant, etc. Assure-toi que la description finale est riche en détails visuels et évoque une atmosphère enchantée et inoubliable.[end_resume]
Pour varier les débuts d'histoire et éviter la répétition, choisis parmi les exemples suivants, ou laisse libre cours à ton imagination :
- Une classe à l'école, un voyage en famille, une fête d'anniversaire, une visite chez les grands-parents, un jour de pluie où les enfants jouent à l'intérieur, une sortie en nature, etc.
- La découverte d'un livre magique, une rencontre inattendue avec un personnage mystérieux, un rêve étrange qui devient réalité, un message secret trouvé dans une bouteille, un animal parlant qui apparaît soudainement, etc.
- Des personnages principaux différents : une fratrie, des amis, un enfant et son grand-parent, un groupe de camarades de classe, etc.
- Des lieux de départ variés : une maison en ville, une cabane dans les bois, un appartement au bord de la mer, une ferme, une école, etc.
- Déclencheur de l'aventure variés aussi : un portail vers un monde magique, un objet mystérieux trouvé dans le grenier, un événement étrange comme une éclipse ou une étoile filante, un animal parlant qui a besoin d'aide, un visiteur de l'espace, etc.
Cette structure aide à créer un récit harmonieux et visuellement riche, propice à l'illustration et captivant pour les enfants.
Attention, je te rappelle la langue cible de l'histoire : "{language_description}"
"""
Prompt Construction
The prompt is designed to provide the AI model with all the necessary information to generate a coherent, educational, and child-friendly story.
-
Language: The
language_description
parameter allows specifying the language of the story, ensuring that the generated text will be in the desired language. -
Theme: The user prompt is integrated into the instructions to serve as the basis for the story.
-
Length: A range of 1000 to 1500 words is specified to control the story’s length.
-
Key Elements: The instructions encourage the inclusion of elements such as adventure, magic, and important educational values.
Instruction Details
The instructions provided to the model are extremely detailed to guide the generation precisely.
Here is an analysis of the different parts of the prompt:
-
Narrative Structure: The model is asked to structure the story with a captivating beginning, a rich development in events, and a satisfying conclusion.
-
Visual Descriptions: The story should be rich in visual descriptions to stimulate children’s imagination.
-
Characters: The development of endearing characters with distinct personalities is encouraged.
-
Specific Tags: Tags such as
[titre]... [end_titre]
and[resume]... [end_resume]
are used to delimit the title and visual descriptions. -
Fantastic Elements: The model is invited to include magical or fantastic elements to make the story more appealing.
-
Educational Values: The story should teach important values.
Role of Tags
Tags play a crucial role in the subsequent processing of the generated text.
-
[titre]… [end_titre]: Delimits the story title. This allows it to be easily extracted for appropriate display in the user interface.
-
[resume]… [end_resume]: Frames the detailed visual descriptions of key scenes in the story. These summaries will be used as prompts for image generation.
Post-Generation Processing
Once the AI model has generated the story following these instructions, the code performs the following steps:
-
Tag Correction: The function
correct_resume_tags
ensures that all tags are correctly formatted for extraction. -
Summary Extraction: The function
extract_summaries
uses the[resume]
and[end_resume]
tags to extract the visual descriptions. -
Image Generation: Each summary is passed to the
generate_image
function to create a corresponding image. -
HTML Content Creation: The story text and generated images are combined to create a complete HTML page.
Impact on Generation
By providing these detailed instructions, the model is guided to:
-
Adhere to the Format: By using the specified tags, the model produces a structured text that facilitates automated processing.
-
Generate Appropriate Content: Constraints on language, style, and themes ensure that the story is suitable for the target audience.
-
Facilitate Image Generation: By extracting precise visual descriptions, quality prompts for image generation are obtained.
Tag Management by the Model
The model is explicitly instructed not to translate or modify the tags. This is essential for keeping the tags intact and usable for post-processing. The instructions emphasize this point to prevent the model, which might attempt to paraphrase or translate the entire text, from altering the tags.
Story Generation
Once the detailed instructions are generated by the generate_story_instructions
function, the next step is to pass these instructions to the AI model to create the story.
def generate_story(prompt, model_type, model_id, language, api_key=None, region_name="us-east-1"):
instruction = generate_story_instructions(prompt, language)
if model_type == "openai":
client = OpenAI(api_key=api_key)
try:
response = client.chat.completions.create(
model=model_id,
messages=[
{
"role": "system",
"content": "Vous êtes un assistant AI expert des histoires pour enfant.",
},
{"role": "user", "content": instruction},
],
)
first_choice_message = response.choices[0].message
return first_choice_message.content
except Exception as e:
return f"Une erreur est survenue : {e}"
# Gestion des autres modèles (Mistral, Anthropic, Meta) via Amazon Bedrock
Interaction with the OpenAI Model
-
OpenAI Client: I instantiate an OpenAI client using the previously retrieved API key.
-
Prompting: The model receives a series of messages:
- A system message indicating that the assistant is an expert in children’s stories.
- The user message containing the generated detailed instructions.
-
Model Response: The model generates a story based on the provided instructions.
Error Handling
If an exception occurs during the OpenAI API call, it is captured, and an error message is returned.
Summary and Tag Extraction
After generating the story, the next step is to extract the visual descriptions using the specified tags.
def correct_resume_tags(text):
# Corrige les balises 'résumé', 'resume', 'titre' et leurs variantes en 'resume' et 'titre' respectivement dans le texte généré.
def extract_summaries(text):
pattern = r"\[resume\](.*?)\[end_resume\]"
summaries = re.findall(pattern, text, re.DOTALL)
return summaries
Tag Correction
The model can sometimes slightly alter the tags (e.g., adding accents). The correct_resume_tags
function ensures that all tags are uniform and correctly formatted.
Summary Extraction
The extract_summaries
function uses a regular expression to find all occurrences of text between the [resume]
and [end_resume]
tags. These summaries are the detailed visual descriptions that will be used to generate the images.
Image Generation
Once the summaries are extracted, each summary is used to generate a corresponding image.
def generate_image_for_each_summary(summaries, model, bucket_name, seed, style, size, quality, language):
images_urls = []
for summary in summaries:
image_data = generate_image(summary, model, seed, style, size, quality, language)
if image_data is not None:
image_url = upload_to_s3(image_data, bucket_name)
images_urls.append(image_url)
else:
images_urls.append("")
return images_urls
generate_image
Function
The generate_image
function calls the API of the image generation model (for example, OpenAI DALL·E) to create an image from the summary.
def generate_image(prompt, model, seed, style, size, quality, language):
width, height = extract_dimensions(size)
if model == "openai":
client = OpenAI(api_key=parameter["Parameter"]["Value"])
adjusted_prompt = generate_image_instructions(prompt, style, language)
try:
response = client.images.generate(
prompt=adjusted_prompt,
model=os.environ.get("OPENAI_IMAGE_MODEL"),
n=1,
size=size,
response_format="b64_json",
quality=quality,
user="user_id",
)
image_data = response.data[0].b64_json
return image_data
except Exception as e:
logger.error(f"Error generating image with OpenAI: {str(e)}", exc_info=True)
return None
# Gestion des autres modèles (Titan, Stable Diffusion) via Amazon Bedrock
Generating Image Instructions The generate_image_instructions
function adapts the summary to create an appropriate prompt for image generation.
def generate_image_instructions(prompt, style, language):
language_description = get_language_description(language)
return f"""
Génère un dessin pour enfant dans le style "{style}" basé sur cette description en langue "{language_description}" : {prompt}.
La scène doit être purement visuelle, sans aucun texte, et conçue pour éveiller l'émerveillement chez les jeunes spectateurs.
"""
-
Style: The style specified by the user (e.g., “watercolor”, “cartoon”) is included in the prompt to influence the image’s rendering.
-
Language: The description is adapted to the chosen language, which can help the model understand cultural nuances.
-
Clear Instructions: By specifying that the scene should be purely visual, we prevent the model from adding text or unwanted elements in the image.
Interaction with the OpenAI API for Images
-
API Call: The
client.images.generate
function is used to generate the image. -
Important Parameters:
- Prompt: The adjusted prompt is passed to the API.
- Model: The specified image generation model.
- Size: The size of the image (e.g., “1024x1024”).
- Quality: The quality of the image (standard, HD).
- Response Format: The images are returned in base64 to facilitate storage and manipulation.
Error Handling
Errors during image generation are captured and logged, allowing issues to be diagnosed.
Creating HTML Content
After generating images corresponding to the extracted summaries, the next step is to assemble the story text and images in a presentable format for the user. This is done by creating structured HTML content that will be displayed on the website.
def create_html_with_images(text_data, images_urls, generate_images=True):
"""
Crée un contenu HTML en intégrant le texte et les images générées.
"""
# Extraction du titre
title_match = re.search(r"\[titre\](.*?)\[end_titre\]", text_data)
if title_match is not None:
title = title_match.group(1)
text_data = text_data.replace(title_match.group(0), "")
else:
title = "Histoire Générée par l'IA"
# Initialisation du contenu HTML
html_content = """
<html>
<head>
<title>Histoire générée par l'IA</title>
<meta charset='UTF-8'>
<style>
/* Styles CSS pour une présentation agréable */
body { font-family: Arial, sans-serif; margin: 20px; }
.title { text-align: center; font-size: 2em; margin-bottom: 20px; }
.center { text-align: center; }
img { max-width: 100%; height: auto; margin: 20px 0; }
p { text-align: justify; line-height: 1.6; }
</style>
</head>
<body>
"""
html_content += f'<div class="title">{title}</div>\n'
# Séparation du texte en segments basés sur les résumés
summaries = extract_summaries(text_data)
segments = re.split(r"\[resume\].*?\[end_resume\]", text_data, flags=re.DOTALL)
# Assemblage du texte et des images
for i, segment in enumerate(segments):
formatted_segment = segment.strip().replace("\n", "<br>")
html_content += f"<p>{formatted_segment}</p>\n"
if generate_images and i < len(images_urls) and images_urls[i]:
image_url = images_urls[i]
html_content += f'<div class="center"><img src="{image_url}" alt="Image générée"></div>\n'
html_content += "</body></html>"
return html_content
Detailed Explanation
-
Title Extraction:
- Uses a regular expression to find the text between the
[titre]
and[end_titre]
tags. - Removes the tags from the main text after extraction.
- If no title is found, a default title is used.
- Uses a regular expression to find the text between the
-
HTML Initialization:
- The HTML content begins with
<html>
,<head>
, and<body>
tags. - CSS styles are included to improve presentation (typography, margins, alignment).
- The HTML content begins with
-
Text Separation:
- The text is divided into segments using the
[resume]
and[end_resume]
tags. - The segments represent parts of the story without the summaries.
- The text is divided into segments using the
-
Assembly:
- Each text segment is inserted into a
<p>
paragraph. - If image generation is enabled and there is a corresponding image, the image is inserted after the paragraph.
- The images are centered and adapted to screen size for a better user experience.
- Each text segment is inserted into a
-
Finalization:
- The closing
</body>
and</html>
tags are added to complete the HTML document.
- The closing
Why This Approach?
-
Alignment of Text and Images: By inserting images after the corresponding text segments, the story is visually enriched, which is particularly important for children.
-
Flexibility: If the user chooses not to generate images, the code handles this case by only inserting text.
-
Accessibility: By using semantic tags and appropriate styles, the content is accessible on different devices (computers, tablets, smartphones).
Upload to S3 and Status Update
Once the HTML content is generated, it needs to be made accessible to the user. This is done by uploading the file to an S3 bucket configured for static website hosting.
def upload_to_s3(content, bucket_name, content_type="image/jpeg"):
"""
Télécharge le contenu sur S3 et retourne l'URL publique.
"""
s3_client = boto3.client("s3")
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
if content_type == "image/jpeg":
file_name = f"generated_images/{timestamp}.jpg"
content_to_upload = base64.b64decode(content)
else:
file_name = f"generated_content/{timestamp}.html"
content_to_upload = content.encode("utf-8")
content_type = "text/html; charset=utf-8"
try:
s3_client.put_object(
Bucket=bucket_name,
Key=file_name,
Body=content_to_upload,
ContentType=content_type,
ACL='public-read'
)
return f"https://{os.environ['CLOUDFRONT_DOMAIN']}/{file_name}"
except Exception as e:
logger.error(f"Error uploading content to S3: {e}", exc_info=True)
raise
Technical Details
-
File Naming:
- The files are named using a timestamp to ensure uniqueness.
- Images are stored in the
generated_images/
directory, and HTML files ingenerated_content/
.
-
Uploading to S3:
- Uses the
boto3
S3 client to interact with the service. - The content is encoded or decoded depending on the type (image or text).
- The
ACL='public-read'
parameter makes the file publicly accessible. - URL Construction: - The public URL is constructed using the configured CloudFront domain, which allows for rapid and secure content distribution.
- Uses the
-
Exception Handling:
- In case of an error during the download, the exception is logged and raised to be handled by the
lambda_handler
.
- In case of an error during the download, the exception is logged and raised to be handled by the
Main Function lambda_handler
The lambda_handler
function is the entry point of the Lambda function. It orchestrates all the previously described steps.
def lambda_handler(event, context):
"""
Point d'entrée de la fonction Lambda.
"""
try:
# Récupération des données de la requête
request_id = event.get("requestId")
body = json.loads(event.get("body", "{}"))
prompt = body.get("text", "Texte par défaut")
# Récupération des autres paramètres (modèles, langue, etc.)
# Mise à jour du statut dans DynamoDB
update_dynamodb(request_id, "Processing")
# Génération de l'histoire
text_data = generate_story(prompt, story_generation_model, model_id, language, api_key)
# Correction des balises et extraction des résumés
text_data = correct_resume_tags(text_data)
summaries = extract_summaries(text_data)
# Génération des images
images_urls = []
if generate_images and summaries:
images_urls = generate_image_for_each_summary(
summaries, image_generation_model, bucket_name, seed, style_with_spaces, size, quality, language
)
# Création du contenu HTML
html_content = create_html_with_images(text_data, images_urls, generate_images)
# Upload du contenu sur S3
result_url = upload_to_s3(html_content, bucket_name, content_type="text/html")
# Mise à jour du statut avec le lien du résultat
update_dynamodb(request_id, "link", result_url)
# Retour de la réponse HTTP
return {
"isBase64Encoded": False,
"statusCode": 200,
"headers": {"Content-Type": "application/json"},
"body": json.dumps({"requestId": request_id, "resultUrl": result_url}),
}
except Exception as e:
logger.error(f"Erreur lors de l'exécution de la fonction lambda: {str(e)}", exc_info=True)
update_dynamodb(request_id, "Failed")
return {
"statusCode": 500,
"body": json.dumps({"message": "Internal server error"}),
"headers": {"Content-Type": "application/json"},
}
Explanation
-
Request Processing:
- Retrieves the necessary information from the received event.
- Request parameters include the prompt, selected models, language, etc.
-
Status Update:
- Before starting the processing, the status is updated to “Processing” in DynamoDB.
-
Story Generation:
- Call to
generate_story
with the appropriate parameters.
- Call to
-
Extraction and Processing:
- Tags are corrected and summaries extracted for image generation.
-
Image Generation:
- If image generation is enabled, the corresponding images are generated and the URLs collected.
-
HTML Content Creation:
- The text and images are combined to create the final HTML content.
-
Upload to S3:
- The HTML content is uploaded to S3 and the result URL is obtained.
-
Final Status Update:
- The status is updated to “link” with the result URL in DynamoDB.
-
Response Return:
- The response includes the
requestId
and the result URL, allowing the client to check the status or directly access the content.
- The response includes the
-
Exception Handling:
- In case of an error, the status is updated to “Failed” and an HTTP 500 response is returned.
Lambda Function status_checker.py
General Overview
The status_checker.py
function allows users to check the status of their story generation request. It queries DynamoDB to retrieve the current status and, if available, the result URL.
Code Analysis
import boto3
import json
from botocore.exceptions import ClientError
def lambda_handler(event, context):
"""
Fonction Lambda pour vérifier le statut d'une demande.
"""
# Initialisation de DynamoDB
dynamodb = boto3.resource("dynamodb")
table = dynamodb.Table("TaskStatus")
# Définition des en-têtes HTTP
headers = {
"Content-Type": "application/json",
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "GET,OPTIONS",
"Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
}
# Récupération du requestId depuis les paramètres de la requête
query_params = event.get("queryStringParameters")
if not query_params or "requestId" not in query_params:
return {
"statusCode": 400,
"body": json.dumps({"message": "Missing requestId"}),
"headers": headers,
}
request_id = query_params["requestId"]
try:
# Récupération de l'élément dans DynamoDB
response = table.get_item(Key={"requestId": request_id})
if "Item" in response:
item = response["Item"]
return {
"statusCode": 200,
"body": json.dumps(
{
"status": item.get("status", "Unknown"),
"resultUrl": item.get("resultUrl", ""),
}
),
"headers": headers,
}
else:
return {
"statusCode": 404,
"body": json.dumps({"message": "Request ID not found"}),
"headers": headers,
}
except ClientError as e:
return {
"statusCode": 500,
"body": json.dumps({"message": str(e)}),
"headers": headers,
}
Details
-
Retrieving the
requestId
:- The
requestId
is essential to identify the specific user request.
- The
-
Querying DynamoDB:
- The function attempts to retrieve the item corresponding to the
requestId
. - If the item exists, the status and
resultUrl
are extracted.
- The function attempts to retrieve the item corresponding to the
-
Response Construction:
- If the status is available, it is returned with the result URL.
- If the item is not found, a 404 error is returned.
- In case of an error during the database query, a 500 error is returned with an appropriate message.
-
HTTP Headers:
- The headers are defined to allow CORS requests from the website.
Integration with API Gateway
Endpoint Configuration
API Gateway exposes two main endpoints to interact with the Lambda functions:
-
/generate-image
:- Method:
POST
- Description: Allows users to initiate the generation of a story and, optionally, associated images.
- Integration: Connected to the Lambda function
StoryPixAI.py
.
- Method:
-
/check-status
:- Method:
GET
- Description: Allows users to check the status of their request by providing the
requestId
. - Integration: Connected to the Lambda function
status_checker.py
.
- Method:
Authentication with Cognito
To secure the API and control access to resources, I integrated Amazon Cognito.
-
User Pool:
- Manages user credentials.
- Allows registration, login, and user management.
-
Authorizer:
- Configured in API Gateway to verify JWT tokens issued by Cognito.
- Ensures that only authenticated requests can access protected endpoints. - Integration on API Gateway:
- The endpoints
/generate-image
and/check-status
are protected by the Cognito authorizer. - Clients must include the authentication token in the headers of their requests (
Authorization
).
Static Website on S3 and Interaction with the API
Website Structure
The static website serves as the user interface for the application.
-
index.html
:- Contains the form allowing users to enter the prompt, choose generation options, and submit their request.
- Includes the scripts necessary for interaction with the API and authentication management.
-
storypixai.js
:- Contains the JavaScript code to manage interactions with the API.
- Manages authentication with Cognito, form submission, status tracking, and displaying results.
User Workflow
-
Login:
- The user logs in via the integrated login form.
- Information is verified via Cognito.
-
Submitting the Request:
- The user fills out the form with the prompt and desired options.
- Upon submission, a
POST
request is sent to the/generate-image
endpoint with the data.
-
Asynchronous Processing:
- The API immediately returns a
requestId
. - The generation process happens in the background.
- The API immediately returns a
-
Status Check:
- The website periodically queries the
/check-status
endpoint, providing therequestId
. - Once the “link” status is received, the result URL is displayed to the user.
- The website periodically queries the
-
Displaying the Result:
- The user can click the link to access the generated story with images.
Request and Response Management
-
Authenticated Requests:
- All requests to the API include the authentication token.
- The token is managed by the Cognito SDK included in the website.
-
Status Management:
- The possible statuses are “Processing,” “link,” “Failed.”
- The site adapts its interface based on the received status (e.g., displaying a spinner, error message, link to the result).
Component Interactions
Here’s how the different components interact:
-
Website ↔️ API Gateway:
- The website sends requests to the endpoints exposed by the API Gateway.
- Authentication tokens are included to secure the requests.
-
API Gateway ↔️ Lambda Functions:
- The API Gateway invokes the corresponding Lambda functions based on the received requests.
-
Lambda Functions ↔️ DynamoDB:
- The Lambda functions
StoryPixAI.py
andstatus_checker.py
interact with DynamoDB to update and retrieve the status of requests.
- The Lambda functions
-
Lambda Function ↔️ S3:
- The function
StoryPixAI.py
uploads generated images and HTML content to S3.
- The function
-
CloudFront ↔️ S3:
- CloudFront is used to distribute the content stored on S3 quickly and securely.
- URLs provided to users point to the CloudFront domain.
-
User ↔️ Website:
- The user interacts with the website to submit requests and view results.
Example of Result in Cloudwatch Logs After a Request Call
Here’s an example of log results after a request call so you can see the raw format of the generated data:
[INFO] 2024-07-22T19:13:49.764Z 4ec7d759-2fd2-49ca-b929-4f4d12629c73 Texte généré par l'ia : [titre]Tom et Zoé à l'aventure ![end_titre]
Une belle matinée de printemps, Tom et Zoé se retrouvent chez leur grand-mère pour les vacances. Tom a des cheveux bruns et ébouriffés, des yeux verts pétillants et une tache de rousseur sur le nez. Zoé, elle, a de longs cheveux blonds tressés, des yeux bleus comme le ciel et toujours un sourire aux lèvres.
Ce jour-là, alors qu'ils jouent dans le jardin, ils découvrent quelque chose d'étrange près du vieux puits. "Regarde, Zoé, cette lumière étrange !", s'exclame Tom.
"On dirait un passage secret...", murmure Zoé avec fascination. Ils se regardent, surexcités par la perspective d'une aventure. Ils s'approchent prudemment et tombent sur un escalier en colimaçon menant sous terre. Sans hésiter, ils commencent à descendre.
L'escalier les mène à une forêt lumineuse où les arbres sont couverts de feuilles dorées et où des fleurs scintillent de toutes les couleurs de l'arc-en-ciel. Le sol est tapissé de mousse douce et le chant mélodieux des oiseaux résonne autour d'eux.
[resume]Un arbre gigantesque au centre de la clairière, avec des racines enchevêtrées formant des arches naturelles. Ses feuilles changent de couleur au gré du vent, passant du vert émeraude au violet profond. Autour de ses branches, des lucioles dansent et éclairent l'atmosphère d'une lumière douce et féerique.[end_resume]
Alors qu'ils explorent les environs émerveillés, un petit renard roux avec une touffe blanche sur la queue surgit devant eux. "Bonjour, je m'appelle Félix. Êtes-vous perdus ?"
"Non, pas vraiment. Nous cherchons simplement à explorer !" répondent-ils en chœur.
"Alors, vous êtes au bon endroit. Mais attention, quelque chose de précieux est en danger ici. Un méga escargot vole toutes les salades du jardin magique et il faut l'arrêter ! Voulez-vous m'aider ?" demande Félix.
Tom et Zoé, enthousiastes devant cette mission, acceptent sans hésiter.
Félix les guide à travers des sentiers sinueux, où les branches des arbres semblent former des arches protectrices au-dessus de leurs têtes. La route devient de plus en plus difficile à mesure qu'ils s'enfoncent dans la forêt.
[resume]Une rivière cristalline aux eaux claires comme le verre, dans laquelle nagent des poissons multicolores. Les rives sont bordées de galets ronds et lisses, et des nénuphars aux fleurs roses flottent doucement à la surface.[end_resume]
"
Regardez là-bas, derrière ce buisson," chuchote Félix, en pointant une direction. Derrière les plantes, ils aperçoivent une trace de bave visqueuse brillamment éclairée.
"Ça doit être l'escargot," murmure Tom.
Ils suivent la piste de bave jusqu'à une clairière où ils tombent face à face avec le méga escargot. Il est énorme, avec une coquille noire et luisante et des yeux perçants qui semblent voir à travers tout.
"Je suis le protecteur de ces salades !" s'exclame l'escargot d'une voix grondante. "Elles m'appartiennent toutes !"
[resume]Le méga escargot est si grand que sa coquille ressemble à une petite montagne arrondie. Elle est noire avec des motifs argentés en spirale qui brillent sous le soleil. Ses antennes sont longues et frémissent à chaque mouvement. Il laisse derrière lui une traînée de bave qui scintille comme des cristaux de glace.[end_resume]
"Mais ces salades nourrissent tout le monde ici," réplique Zoé courageusement. "Il faut partager !"
L'escargot se met à rire et glisse vers eux lentement mais de manière menaçante. Tom et Zoé échangent un regard, ils savent qu'ils doivent utiliser leur intelligence et leur courage pour résoudre ce problème.
"Il y a sans doute un moyen de convaincre l'escargot !" dit Félix. "Utilisons la magie de cette forêt pour lui montrer une meilleure voie."
Zoé, qui découvre soudain qu'elle possède un pouvoir magique, ferme les yeux et se concentre. Elle sent une énergie chaude circuler en elle. Elle lève la main et des lianes lumineuses surgissent du sol, s'enroulant doucement autour de l'escargot sans lui faire de mal.
"Je vais créer un jardin immense juste pour toi," annonce Zoé, "mais tu devras promettre de partager avec tout le monde ici."
L'escargot, touché par la bonté de Zoé, hésite puis accepte. "Je ne savais pas que j'avais blessé autant de monde. Merci de me montrer un autre chemin."
Les lianes lumineuses dessinent alors un magnifique jardin rempli de salades et d'autres délices pour l'escargot. Cependant, le jardin ne s’ouvre que s’il appelle les autres créatures pour partager.
[resume]Un jardin magnifique avec des salades immenses, leurs feuilles vert tendre et croquantes. Des carottes orange vif et des courgettes vertes s'y mêlent, baignant dans une lumière dorée. Des papillons aux ailes irisées volent autour, ajoutant une touche de magie à ce lieu merveilleux.[end_resume]
En voyant cela, l'escargot laisse échapper une larme de reconnaissance et appelle instantanément les animaux de la forêt pour voir le miracle. Les habitants de la forêt acclament Tom et Zoé. Un énorme festin est organisé en leur honneur.
"Merci d'avoir sauvé notre jardin et notre amitié !" s'exclame Félix avec émotion.
Puis, ils se disent au revoir et, guidés par Félix, Tom et Zoé retrouvent le chemin de la maison. Au moment de passer le portail magique, ils se retournent une dernière fois pour admirer le spectacle enchanteur.
[resume]Un pont arc-en-ciel scintillant traverse le ciel, connectant la forêt magique à leur monde. Les couleurs brisées de l'arc iridescent se mélangent sous leurs regards émerveillés, illuminant la verdure environnante sous une lumière douce et chaleureuse. Chaque pas sur le pont résonne d'une mélodie cristalline.[end_resume]
Ils reprennent leur place dans le jardin de leur grand-mère, main dans la main, renforcés par cette aventure. "Tom, tu penses qu'on reverra Félix ?" demande Zoé rêveusement.
"J'espère bien ! Et qui sait quelle nouvelle aventure nous attend !" répond Tom en souriant.
La journée se termine sous le ciel étoilé, et leur amitié est plus forte que jamais, une étoile brillante dans l'univers de leurs rêves et de leurs aventures.
Les défis et les épreuves leur ont appris des valeurs précieuses : l'amitié, le partage, la persévérance, et surtout, la gentillesse.
Et c'est ainsi que Tom et Zoé grandissent, un peu plus chaque jour, devenant eux-mêmes des héros dans leurs cœurs d'enfants.
[resume]Des étoiles filantes traversent un ciel de velours noir, chaque trainée lumineuse ajoutant une touche de mystère à la nuit. Sur le chemin du retour, chaque pas dans le sable semble faire briller les grains comme des diamants sous la douce lumière de la lune. Une douce brise apporte l'odeur salée de la mer, ponctuée par le murmure des vagues au loin.[end_resume]
Fin.
Continuous Integration with GitLab CI/CD
To ensure smooth development and deployment of StoryPixAI, I have set up a continuous integration (CI) and continuous deployment (CD) pipeline using GitLab CI/CD. This configuration automates the build and deployment processes, ensuring code quality and reliability with each change.
Pipeline Configuration
The pipeline is defined in the .gitlab-ci.yml
file at the root of the project. Here’s an overview of its structure:
stages:
- Pré-requis optionel
- Vérifications
- Déploiements
- Management
- Suppressions
variables:
TERRAFORM_VERSION: "1.5.7-*"
TF_VAR_region: $AWS_DEFAULT_REGION
``` This configuration defines the different stages of the pipeline and the global variables used in the CI/CD process.
### Main Jobs
The pipeline includes several key jobs:
1. **Terraform Verification**:
```yaml
Terraform Verification:
stage: Vérifications
when: manual
script:
- /bin/bash -c "source export.sh && terraform_plan"
This job executes terraform plan
to check the planned infrastructure changes without applying them.
-
Terraform Deployment:
Terraform Deployment: stage: Déploiements when: manual dependencies: - Terraform Verification script: - /bin/bash -c "source export.sh && terraform_apply"
After verification, this job applies the infrastructure changes by executing
terraform apply
. -
Terraform Deletion:
Terraform Deletion: stage: Suppressions when: manual script: - /bin/bash -c "source export.sh && terraform_destroy"
This job allows the destruction of the infrastructure if necessary, by executing
terraform destroy
. -
OpenAI Key Management:
OpenAI Key - Add: stage: Pré-requis optionel when: manual script: - | KEYS_FOUND=false if [ -n "$OPENAI_KEY" ]; then /bin/bash -c "source export.sh && manage_openai_key put $OPENAI_KEY" KEYS_FOUND=true fi if [ "$KEYS_FOUND" = false ]; then echo "Aucune clé trouvée." exit 1 fi OpenAI Key - Deletion: stage: Suppressions when: manual script: - /bin/bash -c "source export.sh && manage_openai_key delete"
These jobs manage the secure addition and deletion of OpenAI API keys in AWS Parameter Store.
Execution Environment
Each job runs in a Docker container based on Ubuntu 22.04, with Terraform and AWS CLI installed:
.terraform_template: &terraform_template
image:
name: ubuntu:22.04
before_script:
- apt-get update
- apt-get install -y gnupg software-properties-common curl
- curl -fsSL https://apt.releases.hashicorp.com/gpg | gpg --dearmor -o /usr/share/keyrings/hashicorp-archive-keyring.gpg
- echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg] https://apt.releases.hashicorp.com $(grep 'VERSION_CODENAME' /etc/os-release | cut -d'=' -f2) main" | tee /etc/apt/sources.list.d/hashicorp.list
- apt-get update
- apt-get install -y terraform=${TERRAFORM_VERSION} python3-pip bash jq zip
- pip3 install awscli >> /dev/null
Advantages of this CI/CD Approach
-
Automation: Every code change automatically triggers the pipeline, ensuring consistent checks and deployments.
-
Manual Control: Critical steps like deployment and deletion are configured in manual mode (
when: manual
), offering additional control before execution. -
Secure Secret Management: Integration with AWS Parameter Store for API key management ensures the secure handling of sensitive information.
-
Flexibility: The staged structure allows for ordered and logical execution of different pipeline steps.
-
Reproducibility: Using a standardized Docker environment ensures that builds and tests are reproducible across different systems.
This CI/CD configuration not only automates the deployment of StoryPixAI but also maintains a high level of quality and reliability throughout the development cycle.
Conclusion
StoryPixAI has been much more than just a technical project. It was a real adventure into the world of generative AI, allowing me to combine my passion for technology with the desire to create magical stories for my children.
This project gave me the opportunity to explore various facets of AI, from designing an intuitive user interface to mastering prompting, to setting up a robust cloud infrastructure with AWS and Terraform. Each step was a source of learning, confronting me with stimulating technical challenges and forcing me to broaden my full-stack development and DevOps skills.
I hope this blog post has given you an insight into the backstage of this exciting adventure.
Key Points
-
Detailed Instructions:
- Clear and structured prompts allow consistent and high-quality results from AI models. - Modular Architecture:
- Each component (website, API Gateway, Lambda, DynamoDB, S3, Cognito) plays a specific role, facilitating the maintenance and evolution of the system.
-
Security and Scalability:
- Using AWS managed services ensures robust security and the ability to adapt to increasing demand.
Project link: StoryPixAI
This document was translated from the fr version to the en language using the gpt-4o model. For more information on the translation process, see https://gitlab.com/jls42/ai-powered-markdown-translator