Het automatische vertalingsscript, al versterkt door de mogelijkheden van OpenAI en Mistral AI, verwelkomt een nieuwe innovatie: de integratie van Claude, het nieuwste generatie kunstmatige intelligentiemodel ontworpen door Anthropic. Om de resultaten in alle talen te ontdekken, nodig ik u uit om deze pagina te bezoeken: Vertalingen met Anthropic.

De Integratie van Claude

De toevoeging van Claude, naast OpenAI en Mistral AI in het vertalingsscript, brengt een nieuwe functionaliteit naar het hulpmiddel. Deze uitbreiding versterkt het palet van AI-technologieën ten dienste van gebruikers en illustreert de bereidheid om het script voortdurend te verbeteren om verbeterde en diverse vertaalopties te bieden.

Verbeteringen Gebracht door de Incorporatie van Claude

  • Genuanceerde Begrip van Taal: Claude is ontworpen voor een diep en genuanceerd begrip van teksten, belovend vertalingen van hoge kwaliteit die de betekenis en toon van de originele inhoud nauwkeurig vastleggen.
  • Uitgebreide Taaldekking: Met Claude verrijkt het script zijn meertalige ondersteuning, belovend om het bereik van beschikbare vertalingen verder uit te breiden naar verschillende talen.
  • Uitgebreide Keuze voor Gebruikers: Deze update biedt meer flexibiliteit en stelt gebruikers in staat om te kiezen tussen OpenAI, Mistral AI en nu Claude, afhankelijk van hun specifieke vertaalbehoeften.

Technische Innovaties en Optimalisaties

De toevoeging van Claude gaat gepaard met technische optimalisaties gericht op het verbeteren van de prestaties en efficiëntie van het script:

  • Behoud van Formaten en Structuren: Er wordt bijzondere zorg besteed aan het beheer van formaten, waardoor de getrouwheid van vertaalde inhoud wordt gewaarborgd, met name voor technische documenten.
  • Geavanceerd Beheer van Uitvoerbestanden: Het script verbetert het proces van het creëren en organiseren van vertaalde bestanden, waardoor de workflow van gebruikers wordt geoptimaliseerd.
  • Vernieuwd Vertaalinstructies: De vertaalinstructies zijn verfijnd om een nog grotere getrouwheid aan de brontekst te garanderen, gebruikmakend van Claude’s vermogen om complexe instructies te begrijpen.

Toegang tot de Broncode en Samenwerking

De broncode is toegankelijk voor iedereen die geïnteresseerd is in de nieuwste ontwikkelingen op het gebied van automatische vertaling. Het project is gehost op GitLab, waarbij de gemeenschap wordt uitgenodigd om de code te bekijken, te gebruiken voor hun eigen behoeften en bij te dragen met suggesties of verbeteringen. Om het project te verkennen en misschien uw bijdrage te leveren, volgt u deze link: AI-Powered Markdown Translator.

#!/usr/bin/env python3

import os
import argparse
import time
from openai import OpenAI
import re
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
import glob
import anthropic

EXCLUDE_PATTERNS = ["traductions_"]

# Initialisation de la configuration avec les valeurs par défaut
DEFAULT_OPENAI_API_KEY = "votre-clé-api-openai-par-défaut"
DEFAULT_MISTRAL_API_KEY = "votre-clé-api-mistral-par-défaut"
DEFAULT_MODEL_OPENAI = "gpt-4-1106-preview"
DEFAULT_MODEL_MISTRAL = "mistral-medium"
DEFAULT_MODEL_CLAUDE = "claude-3-opus-20240229"
DEFAULT_SOURCE_LANG = "fr"
DEFAULT_TARGET_LANG = "en"
DEFAULT_SOURCE_DIR = "content/posts"
DEFAULT_TARGET_DIR = "traductions_en"
MODEL_TOKEN_LIMITS = {
    "gpt-4-turbo-preview": 4096,
    "gpt-4-1106-preview": 4096,
    "gpt-4-vision-preview": 4096,
    "gpt-4": 8192,
    "gpt-4-32k": 32768,
    "gpt-4-0613": 8192,
    "gpt-4-32k-0613": 32768,
}


def segment_text(text, max_length):
    """
    Divise un texte Markdown en segments ne dépassant pas la longueur maximale spécifiée,
    en essayant de conserver des points de coupure naturels.

    Args:
        text (str): Texte Markdown à diviser.
        max_length (int): Longueur maximale de chaque segment.

    Returns:
        list[str]: Liste des segments de texte Markdown.
    """

    segments = []
    while text:
        if len(text) <= max_length:
            segments.append(text)
            break
        segment = text[:max_length]
        next_index = max_length

        # Recherche de points de coupure naturels (fin de phrase, fin de paragraphe, fin de titre)
        last_good_break = max(
            segment.rfind(". "), segment.rfind("\n\n"), segment.rfind("\n#")
        )
        if last_good_break != -1:
            next_index = last_good_break + 1

        segments.append(text[:next_index])
        text = text[next_index:]

    return segments

def translate(text, client, args, use_mistral=False, use_claude=False, is_translation_note=False):
    """
    Traduit un texte à l'aide de l'API OpenAI, Mistral AI ou Claude, selon les paramètres spécifiés.
    Cette fonction segmente d'abord le texte pour s'assurer qu'il respecte la limite de tokens du modèle.
    Elle utilise un argument optionnel 'is_translation_note' pour gérer différemment les notes de traduction.

    Args:
        text (str): Texte à traduire.
        client: Objet client de l'API de traduction (OpenAI, Mistral AI ou Claude).
        args: Objet argparse contenant les arguments de la ligne de commande.
        use_mistral (bool): Si True, utilise l'API Mistral AI pour la traduction.
        use_claude (bool): Si True, utilise l'API Claude pour la traduction.
        is_translation_note (bool): Si True, le texte est une note de traduction.

    Returns:
        str: Texte traduit.
    """

    model_limit = MODEL_TOKEN_LIMITS.get(args.model, 4096)

    segments = segment_text(text, model_limit)
    translated_segments = []
    for segment in segments:
        try:
            prompt_message = ""
            if is_translation_note:
                prompt_message = "Directly translate to {} without any additions, ensuring that elements such as URLs, image paths and code blocks are not translated. Leave these elements unchanged. : '{}'".format(args.target_lang, segment)
            else:
                prompt_message = f"Perform a direct translation from {args.source_lang} to {args.target_lang}, without altering URLs. Begin the translation immediately without any introduction or added notes, and ensure not to include any additional information or context beyond the requested translation: '{segment}'. Strictly follow the source text without adding, modifying, or omitting elements that are not explicitly present."
            if use_mistral:
                messages = [ChatMessage(role="user", content=prompt_message)]
                response = client.chat(model=args.model, messages=messages)
                translated_text = response.choices[0].message.content.strip()
            elif use_claude:
                messages = [{"role": "user", "content": prompt_message}]
                response = client.messages.create(model=args.model, max_tokens=4096, messages=messages)
                # Extraire le texte de chaque ContentBlock dans la liste de réponses
                translated_texts = [block.text.strip() for block in response.content]  # Assurez-vous que .content est la liste des ContentBlock
                translated_text = " ".join(translated_texts)

            else:
                messages = [
                    {"role": "system", "content": prompt_message},
                    {"role": "user", "content": segment},
                ]
                response = client.chat.completions.create(
                    model=args.model, messages=messages
                )
                translated_text = response.choices[0].message.content.strip()
        except Exception as e:
            raise RuntimeError(f"Erreur lors de la traduction : {e}")

        translated_segments.append(translated_text)

    return " ".join(translated_segments)

def translate_markdown_file(
    file_path,
    output_path,
    client,
    args,
    use_mistral,
    use_claude,
    add_translation_note=False,
    force=False,
):
    """
    Traduit un fichier Markdown en utilisant les modèles de traitement du langage naturel de OpenAI, Mistral AI ou Claude.

    Args:
        file_path (str): Chemin complet vers le fichier d'entrée.
        output_path (str): Chemin complet vers le fichier de sortie.
        client: Objet client de traduction.
        args: Arguments supplémentaires pour la traduction.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
        use_claude (bool): Indique si l'API Claude doit être utilisée pour la traduction.
        add_translation_note (bool): Indique si une note de traduction doit être ajoutée.
        force (bool): Indique si la traduction doit être forcée même si une traduction existe déjà.

    Returns:
        None. Le résultat de la traduction est écrit dans le fichier de sortie spécifié.
        En cas d'échec, un message est imprimé pour indiquer une erreur et suggérer de relancer le traitement.
    """

    try:
        # Calcul des chemins relatifs pour un affichage plus lisible
        relative_file_path = os.path.join(
            args.source_dir, os.path.relpath(file_path, start=args.source_dir)
        )
        relative_output_path = os.path.join(
            args.target_dir, os.path.relpath(output_path, start=args.target_dir)
        )

        print(f"Traitement du fichier : {relative_file_path}")
        start_time = time.time()

        # Lecture du contenu du fichier
        with open(file_path, "r", encoding="utf-8") as f:
            content = f.read()

        if not content:
            print(
                f"Le fichier '{relative_file_path}' est vide, aucune traduction n'est effectuée."
            )
            return

        # Extraction et remplacement des blocs de code pour les préserver pendant la traduction
        regex = re.compile(
            r"(?P<start>^```(?P<block_language>(\w|-)+)\n)(?P<code>.*?\n)(?P<end>```)",
            re.DOTALL | re.MULTILINE,
        )
        code_blocks = [match.group("code") for match in regex.finditer(content)]
        placeholders = [f"#CODEBLOCK{index}#" for index, _ in enumerate(code_blocks)]
        for placeholder, code_block in zip(placeholders, code_blocks):
            content = content.replace(code_block, placeholder)

        # Traduction du contenu
        translated_content = translate(content, client, args, use_mistral, use_claude)

        # Restauration des blocs de code dans le contenu traduit
        for placeholder, code_block in zip(placeholders, code_blocks):
            translated_content = translated_content.replace(placeholder, code_block)

        # Ajout de la note de traduction si nécessaire
        if add_translation_note:
            translation_note = translate(
                "Ce document a été traduit de la version "
                + args.source_lang
                + " vers la langue "
                + args.target_lang
                + " en utilisant le modèle "
                + args.model
                + ". Pour plus d'informations sur le processus de traduction, consultez https://gitlab.com/jls42/ai-powered-markdown-translator",
                client,
                args,
                use_mistral,
                use_claude,
                True,
            )
            translated_content += "\n\n**" + translation_note + "**\n\n"

        # Écriture du contenu traduit dans le fichier de sortie
        clean_output_path = os.path.normpath(output_path)
        if os.path.exists(clean_output_path) and not force:
            print(
                f"Le fichier '{relative_output_path}' existe déjà, aucune traduction n'est effectuée."
            )
            return
        with open(clean_output_path, "w", encoding="utf-8") as f:
            f.write(translated_content)

        end_time = time.time()
        print(
            f"Fichier '{relative_file_path}' traduit en {end_time - start_time:.2f} secondes et enregistré sous : {relative_output_path}"
        )
    except IOError as e:
        print(f"Erreur lors du traitement du fichier '{relative_file_path}': {e}")
    except Exception as e:
        print(
            f"Une erreur inattendue est survenue lors de la traduction du fichier '{relative_file_path}': {e}\n"
            "Veuillez relancer le traitement pour ce fichier."
        )



def is_excluded(path):
    """
    Vérifie si le chemin donné correspond à l'un des motifs d'exclusion.

    Cette fonction parcourt la liste des motifs d'exclusion définis dans EXCLUDE_PATTERNS.
    Si l'un de ces motifs est trouvé dans le chemin fourni, la fonction renvoie True,
    indiquant que le chemin doit être exclu du processus de traduction.

    Args:
        path (str): Le chemin du fichier ou du répertoire à vérifier.

    Returns:
        bool: True si le chemin correspond à l'un des motifs d'exclusion, False sinon.
    """

    for pattern in EXCLUDE_PATTERNS:
        if pattern in path:
            return True
    return False


def translate_directory(
    input_dir, output_dir, client, args, use_mistral, use_claude, add_translation_note, force
):
    """
    Traduit tous les fichiers markdown dans le répertoire d'entrée et ses sous-répertoires.

    Args:
        input_dir (str): Chemin vers le répertoire d'entrée.
        output_dir (str): Chemin vers le répertoire de sortie.
        client: Objet client de traduction.
        args: Arguments supplémentaires pour la traduction.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
        use_claude (bool): Indique si l'API Claude doit être utilisée pour la traduction.
        add_translation_note (bool): Indique si une note de traduction doit être ajoutée.
        force (bool): Indique si la traduction doit être forcée même si une traduction existe déjà.

    Returns:
        None
    """

    input_dir = os.path.abspath(input_dir)
    output_dir = os.path.abspath(output_dir)

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    output_base_dir = os.path.basename(output_dir)

    for root, dirs, files in os.walk(input_dir, topdown=True):
        if is_excluded(root) or root.startswith(output_dir):
            continue

        if (
            os.path.basename(root) == output_base_dir
            and os.path.abspath(os.path.join(root, "..")) == input_dir
        ):
            continue

        for file in files:
            if file.endswith(".md") and not is_excluded(file):
                file_path = os.path.join(root, file)
                base, _ = os.path.splitext(file)
                output_file = f"{base}-{args.target_lang}-{args.model}.md"  # Inversion du modèle et de la langue
                relative_path = os.path.relpath(root, input_dir)
                output_path = os.path.join(output_dir, relative_path, output_file)

                os.makedirs(os.path.dirname(output_path), exist_ok=True)

                # Vérification si une traduction existe déjà, peu importe le modèle
                target_language_files = glob.glob(
                    f"{output_dir}/**/{base}-{args.target_lang}*.md", recursive=True
                ) + glob.glob(
                    f"{output_dir}/**/{base}-*{args.target_lang}.md", recursive=True
                )
                existing_translation = any(
                    [os.path.exists(file) for file in target_language_files]
                )
                if not existing_translation or force:
                    translate_markdown_file(
                        file_path,
                        output_path,
                        client,
                        args,
                        use_mistral,
                        use_claude,
                        add_translation_note,
                        force,
                    )
                    print(f"Fichier '{file}' traité.")
                elif not force:
                    print(
                        f"La traduction de '{file}' existe déjà, aucune action effectuée."
                    )

def main():
    """
    Point d'entrée principal du script de traduction de fichiers Markdown.

    Ce script traduit des fichiers Markdown d'une langue source à une langue cible en utilisant
    les services de traduction de l'API OpenAI, Mistral AI ou Claude. Il prend en charge la segmentation
    des textes longs et peut également ajouter une note de traduction en fin de document.

    Arguments du script:
    --source_dir: Répertoire contenant les fichiers Markdown à traduire.
    --target_dir: Répertoire de destination pour les fichiers traduits.
    --model: Modèle de traduction GPT à utiliser.
    --target_lang: Langue cible pour la traduction.
    --source_lang: Langue source des documents.
    --use_mistral: Indicateur pour utiliser l'API Mistral AI pour la traduction.
    --use_claude: Indicateur pour utiliser l'API Claude pour la traduction.
    --add_translation_note: Indicateur pour ajouter une note de traduction au contenu traduit.
    """

    parser = argparse.ArgumentParser(description="Traduit les fichiers Markdown.")
    parser.add_argument(
        "--force",
        action="store_true",
        help="Forcer la traduction même si une traduction existe déjà",
    )
    parser.add_argument(
        "--source_dir",
        type=str,
        default=DEFAULT_SOURCE_DIR,
        help="Répertoire source contenant les fichiers Markdown",
    )
    parser.add_argument(
        "--target_dir",
        type=str,
        default=DEFAULT_TARGET_DIR,
        help="Répertoire cible pour sauvegarder les traductions",
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Modèle GPT à utiliser pour la traduction, la valeur par défaut dépend de l'API sélectionnée",
    )
    parser.add_argument(
        "--target_lang",
        type=str,
        default=DEFAULT_TARGET_LANG,
        help="Langue cible pour la traduction",
    )
    parser.add_argument(
        "--source_lang",
        type=str,
        default=DEFAULT_SOURCE_LANG,
        help="Langue source pour la traduction",
    )
    parser.add_argument(
        "--use_mistral",
        action="store_true",
        help="Utiliser l'API Mistral AI pour la traduction",
    )
    parser.add_argument(
        "--use_claude",
        action="store_true",
        help="Utiliser l'API Claude d'Anthropic pour la traduction",
    )
    parser.add_argument(
        "--add_translation_note",
        action="store_true",
        help="Ajouter une note de traduction au contenu traduit",
    )

    args = parser.parse_args()

    if not os.path.isdir(args.source_dir):
        raise ValueError(f"Le répertoire source spécifié n'existe pas : {args.source_dir}")
    if not os.path.exists(args.target_dir):
        os.makedirs(args.target_dir)

    if args.use_mistral:
        args.model = args.model if args.model else DEFAULT_MODEL_MISTRAL
        api_key = os.getenv("MISTRAL_API_KEY", DEFAULT_MISTRAL_API_KEY)
        if not api_key:
            raise ValueError("Clé API Mistral non spécifiée.")
        client = MistralClient(api_key=api_key)
    elif args.use_claude:
        args.model = args.model if args.model else DEFAULT_MODEL_CLAUDE
        api_key = os.getenv("ANTHROPIC_API_KEY")
        if not api_key:
            raise ValueError("Clé API Claude non spécifiée.")
        client = anthropic.Anthropic(api_key=api_key)
    else:
        args.model = args.model if args.model else DEFAULT_MODEL_OPENAI
        openai_api_key = os.getenv("OPENAI_API_KEY", DEFAULT_OPENAI_API_KEY)
        if not openai_api_key:
            raise ValueError("Clé API OpenAI non spécifiée.")
        client = OpenAI(api_key=openai_api_key)

    translate_directory(
        args.source_dir,
        args.target_dir,
        client,
        args,
        args.use_mistral,
        args.use_claude, 
        args.add_translation_note,
        args.force,
    )

    if args.use_mistral or args.use_claude:
        try:
            del client
        except TypeError:
            pass


if __name__ == "__main__":
    main()

Conclusie

De integratie van Claude met OpenAI en Mistral AI in het automatische vertalingsscript illustreert een stap vooruit in richting van uitmuntendheid en innovatie. Door gebruik te maken van de unieke krachten van elke AI-technologie, onderscheidt dit project zich op het gebied van vertaalsolutions, waarbij uitzonderlijke flexibiliteit en kwaliteit worden gegarandeerd om tegemoet te komen aan een breed scala aan vertaalbehoeften.

Dit document is vertaald van de fr-versie naar de nl-taal met behulp van het gpt-4o-model. Voor meer informatie over het vertaalproces, zie https://gitlab.com/jls42/ai-powered-markdown-translator