Z przyjemnością ogłaszam wydanie wersji 1.5 mojego skryptu AI-Powered Markdown Translator. Ta aktualizacja przynosi kilka znaczących usprawnień, w tym aktualizację domyślnych modeli, optymalizację promptów tłumaczeniowych, refaktoryzację kodu i lepsze zarządzanie plikami wyjściowymi.

Nowości w Wersji 1.5

Aktualizacja Domyślnych Modeli i Kluczy API

W tej wersji zaktualizowałem domyślne modele i klucze API do najnowszych dostępnych wersji modeli AI:

  • OpenAI: Aktualizacja do gpt-4o.
  • Mistral AI: Przejście na mistral-large-latest.
  • Claude od Anthropic: Aktualizacja do claude-3-5-sonnet-20240620 oraz dodanie DEFAULT_ANTHROPIC_API_KEY.

Te aktualizacje zapewniają, że skrypt korzysta z najnowszych i najbardziej wydajnych modeli do tłumaczenia, oferując tym samym lepszą jakość tłumaczeń.

Optymalizacja Promptów Tłumaczeniowych

Wzbogaciłem prompty używane do interakcji z modelami AI, aby poprawić klarowność i skuteczność tłumaczeń:

  • Szczegółowe Instrukcje: Prompty teraz zawierają konkretne wytyczne dotyczące zachowania metadanych, URL-i, ścieżek obrazów, bloków kodu oraz elementów formatowania takich jak ‘front matter’ w plikach Markdown.
  • Zachowanie Formatowania: Nacisk na nietłumaczenie elementów formatowania i kodu pomaga zapewnić, że tłumaczenia lepiej zachowują oryginalną strukturę dokumentów.

Refaktoryzacja i Usprawnienia Kodu

Wprowadzono poprawki mające na celu poprawę łatwości utrzymania i wydajności skryptu:

  • Zastąpienie MistralClient przez Mistral: Zaktualizowałem inicjalizację klienta dla Mistral AI, używając klasy Mistral dla lepszej kompatybilności z nowymi wersjami API.
  • Reorganizacja Importów: Importy zostały zreorganizowane w celu poprawienia czytelności i ułatwienia utrzymania kodu.
  • Ulepszenie Segmentacji Tekstów: Funkcja segmentacji teraz lepiej radzi sobie z długimi tekstami, zachowując naturalne punkty podziału, co poprawia spójność i płynność tłumaczeń.
  • Zarządzanie Blokami Kodów: Skrypt teraz zachowuje bloki kodu podczas tłumaczenia, aby utrzymać oryginalne formatowanie i unikać potencjalnych błędów w kodzie.

Lepsze Zarządzanie Plikami Wyjściowymi

  • Nazewnictwo Plików: Odwróciłem kolejność modelu i języka w nazwach plików wyjściowych, aby ułatwić organizację i wyszukiwanie tłumaczeń. Na przykład: moj_artykul-en-gpt-4o.md.
  • Weryfikacja Istniejących Tłumaczeń: Skrypt teraz sprawdza, czy tłumaczenie już istnieje dla danego pliku, niezależnie od używanego modelu, aby uniknąć niepotrzebnych duplikacji. Opcję --force można użyć do wymuszenia tłumaczenia, jeśli to konieczne.

Inne Ulepszenia

  • Czyszczenie Kodu: Usunięcie niepotrzebnych pustych linii i drobne poprawki w celu usprawnienia struktury i czytelności skryptu.
  • Większa Elastyczność: Skrypt jest zaprojektowany tak, aby można go było łatwo rozszerzać, umożliwiając w przyszłości dodanie nowych funkcji lub wsparcia dla nowych modeli AI, takich jak te od Anthropic i Mistral AI.

Zaktualizowany Kod

Oto nowy skrypt:

#!/usr/bin/env python3

import os
import argparse
import time
import re
import glob

from openai import OpenAI
import anthropic
from mistralai import Mistral

EXCLUDE_PATTERNS = ["traductions_"]

# Initialisation de la configuration avec les valeurs par défaut
DEFAULT_OPENAI_API_KEY = "votre-cle-api-openai-par-defaut"
DEFAULT_MISTRAL_API_KEY = "votre-cle-api-mistral-par-defaut"
DEFAULT_ANTHROPIC_API_KEY = "votre-cle-api-anthropic-par-defaut"
DEFAULT_MODEL_OPENAI = "gpt-4o"
DEFAULT_MODEL_MISTRAL = "mistral-large-latest"
DEFAULT_MODEL_CLAUDE = "claude-3-5-sonnet-20240620"
DEFAULT_SOURCE_LANG = "fr"
DEFAULT_TARGET_LANG = "en"
DEFAULT_SOURCE_DIR = "content/posts"
DEFAULT_TARGET_DIR = "traductions_en"
MODEL_TOKEN_LIMITS = {
    "gpt-4o": 4096,
    "gpt-4": 8192,
    "gpt-4-32k": 32768,
    "gpt-4-0613": 8192,
    "gpt-4-32k-0613": 32768,
    "mistral-large-latest": 4096,
    "claude-3-5-sonnet-20240620": 8192,
}


def segment_text(text, max_length):
    """
    Divise un texte Markdown en segments ne dépassant pas la longueur maximale spécifiée,
    en essayant de conserver des points de coupure naturels.

    Args:
        text (str): Texte Markdown à diviser.
        max_length (int): Longueur maximale de chaque segment.

    Returns:
        list[str]: Liste des segments de texte Markdown.
    """

    segments = []
    while text:
        if len(text) <= max_length:
            segments.append(text)
            break
        segment = text[:max_length]
        next_index = max_length

        # Recherche de points de coupure naturels (fin de phrase, fin de paragraphe, fin de titre)
        last_good_break = max(
            segment.rfind(". "), segment.rfind("\n\n"), segment.rfind("\n#")
        )
        if last_good_break != -1:
            next_index = last_good_break + 1

        segments.append(text[:next_index])
        text = text[next_index:]

    return segments


def translate(
    text, client, args, use_mistral=False, use_claude=False, is_translation_note=False
):
    """
    Traduit un texte à l'aide de l'API OpenAI, Mistral AI ou Claude, selon les paramètres spécifiés.
    Cette fonction segmente d'abord le texte pour s'assurer qu'il respecte la limite de tokens du modèle.
    Elle utilise un argument optionnel 'is_translation_note' pour gérer différemment les notes de traduction.

    Args:
        text (str): Texte à traduire.
        client: Objet client de l'API de traduction (OpenAI, Mistral AI ou Claude).
        args: Objet argparse contenant les arguments de la ligne de commande.
        use_mistral (bool): Si True, utilise l'API Mistral AI pour la traduction.
        use_claude (bool): Si True, utilise l'API Claude pour la traduction.
        is_translation_note (bool): Si True, le texte est une note de traduction.

    Returns:
        str: Texte traduit.
    """

    model_limit = MODEL_TOKEN_LIMITS.get(args.model, 4096)

    segments = segment_text(text, model_limit)
    translated_segments = []
    for segment in segments:
        try:
            prompt_message = ""
            if is_translation_note:
                prompt_message = (
                    f"Directly translate to {args.target_lang} without any additions, ensuring that elements such as URLs, image paths, code blocks, "
                    "and specifically 'front matter' metadata (like 'title', 'date', 'categories', 'tags', 'draft') are not translated. "
                    "The 'front matter' is a block of metadata used at the beginning of some file formats like Markdown for static site generators "
                    "such as Hugo. These metadata should remain unchanged. Additionally, any specific file formatting or markup language elements "
                    "(e.g., special tags, preprocessing directives) should also be left unchanged. Here is the text to translate: "
                    f"'{segment}'."
                )
            else:
                prompt_message = (
                    f"Perform a direct translation from {args.source_lang} to {args.target_lang}, without altering URLs. "
                    f"Begin the translation immediately without any introduction or added notes, and ensure not to include any additional "
                    f"information or context beyond the requested translation: '{segment}'. Strictly follow the source text without adding, "
                    f"modifying, or omitting elements that are not explicitly present."
                )

            if use_mistral:
                messages = [{"role": "user", "content": prompt_message}]
                response = client.chat.complete(model=args.model, messages=messages)
                translated_text = response.choices[0].message.content.strip()
            elif use_claude:
                messages = [{"role": "user", "content": prompt_message}]
                response = client.messages.create(
                    model=args.model, max_tokens=4096, messages=messages
                )
                # Extraire le texte de chaque ContentBlock dans la liste de réponses
                translated_texts = [
                    block.text.strip() for block in response.content
                ]  # Assurez-vous que .content est la liste des ContentBlock
                translated_text = " ".join(translated_texts)
            else:
                messages = [
                    {"role": "system", "content": prompt_message},
                    {"role": "user", "content": segment},
                ]
                response = client.chat.completions.create(
                    model=args.model, messages=messages
                )
                translated_text = response.choices[0].message.content.strip()
        except Exception as e:
            raise RuntimeError(f"Erreur lors de la traduction : {e}")

        translated_segments.append(translated_text)

    return " ".join(translated_segments)


def translate_markdown_file(
    file_path,
    output_path,
    client,
    args,
    use_mistral,
    use_claude,
    add_translation_note=False,
    force=False,
):
    """
    Traduit un fichier Markdown en utilisant les modèles de traitement du langage naturel de OpenAI, Mistral AI ou Claude.

    Args:
        file_path (str): Chemin complet vers le fichier d'entrée.
        output_path (str): Chemin complet vers le fichier de sortie.
        client: Objet client de traduction.
        args: Arguments supplémentaires pour la traduction.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
        use_claude (bool): Indique si l'API Claude doit être utilisée pour la traduction.
        add_translation_note (bool): Indique si une note de traduction doit être ajoutée.
        force (bool): Indique si la traduction doit être forcée même si une traduction existe déjà.

    Returns:
        None. Le résultat de la traduction est écrit dans le fichier de sortie spécifié.
        En cas d'échec, un message est imprimé pour indiquer une erreur et suggérer de relancer le traitement.
    """

    try:
        # Calcul des chemins relatifs pour un affichage plus lisible
        relative_file_path = os.path.join(
            args.source_dir, os.path.relpath(file_path, start=args.source_dir)
        )
        relative_output_path = os.path.join(
            args.target_dir, os.path.relpath(output_path, start=args.target_dir)
        )

        print(f"Traitement du fichier : {relative_file_path}")
        start_time = time.time()

        # Lecture du contenu du fichier
        with open(file_path, "r", encoding="utf-8") as f:
            content = f.read()

        if not content:
            print(
                f"Le fichier '{relative_file_path}' est vide, aucune traduction n'est effectuée."
            )
            return

        # Extraction et remplacement des blocs de code pour les préserver pendant la traduction
        regex = re.compile(
            r"(?P<start>^```(?P<block_language>(\w|-)+)\n)(?P<code>.*?\n)(?P<end>```)",
            re.DOTALL | re.MULTILINE,
        )
        code_blocks = [match.group("code") for match in regex.finditer(content)]
        placeholders = [f"#CODEBLOCK{index}#" for index, _ in enumerate(code_blocks)]
        for placeholder, code_block in zip(placeholders, code_blocks):
            content = content.replace(code_block, placeholder)

        # Traduction du contenu
        translated_content = translate(content, client, args, use_mistral, use_claude)

        # Restauration des blocs de code dans le contenu traduit
        for placeholder, code_block in zip(placeholders, code_blocks):
            translated_content = translated_content.replace(placeholder, code_block)

        # Ajout de la note de traduction si nécessaire
        if add_translation_note:
            translation_note = translate(
                "Ce document a été traduit de la version "
                + args.source_lang
                + " vers la langue "
                + args.target_lang
                + " en utilisant le modèle "
                + args.model
                + ". Pour plus d'informations sur le processus de traduction, consultez https://gitlab.com/jls42/ai-powered-markdown-translator",
                client,
                args,
                use_mistral,
                use_claude,
                True,
            )
            translated_content += "\n\n**" + translation_note + "**\n\n"

        # Écriture du contenu traduit dans le fichier de sortie
        clean_output_path = os.path.normpath(output_path)
        if os.path.exists(clean_output_path) and not force:
            print(
                f"Le fichier '{relative_output_path}' existe déjà, aucune traduction n'est effectuée."
            )
            return
        with open(clean_output_path, "w", encoding="utf-8") as f:
            f.write(translated_content)

        end_time = time.time()
        print(
            f"Fichier '{relative_file_path}' traduit en {end_time - start_time:.2f} secondes et enregistré sous : {relative_output_path}"
        )
    except IOError as e:
        print(f"Erreur lors du traitement du fichier '{relative_file_path}': {e}")
    except Exception as e:
        print(
            f"Une erreur inattendue est survenue lors de la traduction du fichier '{relative_file_path}': {e}\n"
            "Veuillez relancer le traitement pour ce fichier."
        )


def is_excluded(path):
    """
    Vérifie si le chemin donné correspond à l'un des motifs d'exclusion.

    Cette fonction parcourt la liste des motifs d'exclusion définis dans EXCLUDE_PATTERNS.
    Si l'un de ces motifs est trouvé dans le chemin fourni, la fonction renvoie True,
    indiquant que le chemin doit être exclu du processus de traduction.

    Args:
        path (str): Le chemin du fichier ou du répertoire à vérifier.

    Returns:
        bool: True si le chemin correspond à l'un des motifs d'exclusion, False sinon.
    """

    for pattern in EXCLUDE_PATTERNS:
        if pattern in path:
            return True
    return False


def translate_directory(
    input_dir,
    output_dir,
    client,
    args,
    use_mistral,
    use_claude,
    add_translation_note,
    force,
):
    """
    Traduit tous les fichiers markdown dans le répertoire d'entrée et ses sous-répertoires.

    Args:
        input_dir (str): Chemin vers le répertoire d'entrée.
        output_dir (str): Chemin vers le répertoire de sortie.
        client: Objet client de traduction.
        args: Arguments supplémentaires pour la traduction.
        use_mistral (bool): Indique si l'API Mistral AI doit être utilisée pour la traduction.
        use_claude (bool): Indique si l'API Claude doit être utilisée pour la traduction.
        add_translation_note (bool): Indique si une note de traduction doit être ajoutée.
        force (bool): Indique si la traduction doit être forcée même si une traduction existe déjà.

    Returns:
        None
    """

    input_dir = os.path.abspath(input_dir)
    output_dir = os.path.abspath(output_dir)

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    output_base_dir = os.path.basename(output_dir)

    for root, dirs, files in os.walk(input_dir, topdown=True):
        if is_excluded(root) or root.startswith(output_dir):
            continue

        if (
            os.path.basename(root) == output_base_dir
            and os.path.abspath(os.path.join(root, "..")) == input_dir
        ):
            continue

        for file in files:
            if file.endswith(".md") and not is_excluded(file):
                file_path = os.path.join(root, file)
                base, _ = os.path.splitext(file)
                output_file = f"{base}-{args.target_lang}-{args.model}.md"  # Inversion du modèle et de la langue
                relative_path = os.path.relpath(root, input_dir)
                output_path = os.path.join(output_dir, relative_path, output_file)

                os.makedirs(os.path.dirname(output_path), exist_ok=True)

                # Vérification si une traduction existe déjà, peu importe le modèle
                target_language_files = glob.glob(
                    f"{output_dir}/**/{base}-{args.target_lang}*.md", recursive=True
                ) + glob.glob(
                    f"{output_dir}/**/{base}-*{args.target_lang}.md", recursive=True
                )
                existing_translation = any(
                    [os.path.exists(file) for file in target_language_files]
                )
                if not existing_translation or force:
                    translate_markdown_file(
                        file_path,
                        output_path,
                        client,
                        args,
                        use_mistral,
                        use_claude,
                        add_translation_note,
                        force,
                    )
                    print(f"Fichier '{file}' traité.")
                elif not force:
                    print(
                        f"La traduction de '{file}' existe déjà, aucune action effectuée."
                    )


def main():
    """
    Point d'entrée principal du script de traduction de fichiers Markdown.

    Ce script traduit des fichiers Markdown d'une langue source à une langue cible en utilisant
    les services de traduction de l'API OpenAI, Mistral AI ou Claude. Il prend en charge la segmentation
    des textes longs et peut également ajouter une note de traduction en fin de document.

    Arguments du script:
    --source_dir: Répertoire contenant les fichiers Markdown à traduire.
    --target_dir: Répertoire de destination pour les fichiers traduits.
    --model: Modèle de traduction GPT à utiliser.
    --target_lang: Langue cible pour la traduction.
    --source_lang: Langue source des documents.
    --use_mistral: Indicateur pour utiliser l'API Mistral AI pour la traduction.
    --use_claude: Indicateur pour utiliser l'API Claude pour la traduction.
    --add_translation_note: Indicateur pour ajouter une note de traduction au contenu traduit.
    """

    parser = argparse.ArgumentParser(description="Traduit les fichiers Markdown.")
    parser.add_argument(
        "--force",
        action="store_true",
        help="Forcer la traduction même si une traduction existe déjà",
    )
    parser.add_argument(
        "--source_dir",
        type=str,
        default=DEFAULT_SOURCE_DIR,
        help="Répertoire source contenant les fichiers Markdown",
    )
    parser.add_argument(
        "--target_dir",
        type=str,
        default=DEFAULT_TARGET_DIR,
        help="Répertoire cible pour sauvegarder les traductions",
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Modèle GPT à utiliser pour la traduction, la valeur par défaut dépend de l'API sélectionnée",
    )
    parser.add_argument(
        "--target_lang",
        type=str,
        default=DEFAULT_TARGET_LANG,
        help="Langue cible pour la traduction",
    )
    parser.add_argument(
        "--source_lang",
        type=str,
        default=DEFAULT_SOURCE_LANG,
        help="Langue source pour la traduction",
    )
    parser.add_argument(
        "--use_mistral",
        action="store_true",
        help="Utiliser l'API Mistral AI pour la traduction",
    )
    parser.add_argument(
        "--use_claude",
        action="store_true",
        help="Utiliser l'API Claude d'Anthropic pour la traduction",
    )
    parser.add_argument(
        "--add_translation_note",
        action="store_true",
        help="Ajouter une note de traduction au contenu traduit",
    )

    args = parser.parse_args()

    if not os.path.isdir(args.source_dir):
        raise ValueError(
            f"Le répertoire source spécifié n'existe pas : {args.source_dir}"
        )
    if not os.path.exists(args.target_dir):
        os.makedirs(args.target_dir)

    if args.use_mistral:
        args.model = args.model if args.model else DEFAULT_MODEL_MISTRAL
        api_key = os.getenv("MISTRAL_API_KEY", DEFAULT_MISTRAL_API_KEY)
        if not api_key:
            raise ValueError("Clé API Mistral non spécifiée.")
        client = Mistral(api_key=api_key)
    elif args.use_claude:
        args.model = args.model if args.model else DEFAULT_MODEL_CLAUDE
        api_key = os.getenv("ANTHROPIC_API_KEY", DEFAULT_ANTHROPIC_API_KEY)
        if not api_key:
            raise ValueError("Clé API Claude non spécifiée.")
        client = anthropic.Anthropic(api_key=api_key)
    else:
        args.model = args.model if args.model else DEFAULT_MODEL_OPENAI
        openai_api_key = os.getenv("OPENAI_API_KEY", DEFAULT_OPENAI_API_KEY)
        if not openai_api_key:
            raise ValueError("Clé API OpenAI non spécifiée.")
        client = OpenAI(api_key=openai_api_key)

    translate_directory(
        args.source_dir,
        args.target_dir,
        client,
        args,
        args.use_mistral,
        args.use_claude,
        args.add_translation_note,
        args.force,
    )

    if args.use_mistral or args.use_claude:
        try:
            del client
        except TypeError:
            pass


if __name__ == "__main__":
    main()

Dostęp do Kodu Źródłowego

Pełny kod źródłowy, zawierający wszystkie nowe funkcje, jest dostępny na GitLab. Zachęcam do zapoznania się z nim, wykorzystania w swoich projektach lub do wniesienia wkładu. Twoja opinia jest cenna dla ciągłego doskonalenia tego narzędzia.

👉 AI-Powered Markdown Translator na GitLab

Konkluzja

Ta aktualizacja wersji 1.5 stanowi ważny krok w rozwoju mojego skryptu do automatycznego tłumaczenia AI-Powered Markdown Translator. Aktualizując domyślne modele i optymalizując kod, dążę do dostarczenia jeszcze bardziej potężnego i elastycznego narzędzia, które sprosta Twoim potrzebom tłumaczeniowym. Mam nadzieję, że te usprawnienia będą dla Ciebie użyteczne i jestem otwarty na Twoje uwagi i sugestie.

Ten dokument został przetłumaczony z wersji fr na język pl za pomocą modelu gpt-4o. Aby uzyskać więcej informacji na temat procesu tłumaczenia, odwiedź https://gitlab.com/jls42/ai-powered-markdown-translator