Descubra cómo integrar el nuevo modelo OpenAI o1-preview en un script de Python para enriquecer sus proyectos de inteligencia artificial. Este script le permite interactuar con la API de OpenAI utilizando el modelo o1-preview, con la posibilidad de incluir contenido web en los prompts gracias a una funcionalidad de web scraping. Además, gestiona correctamente las expresiones matemáticas LaTeX en las respuestas del modelo, convirtiéndolas en texto Unicode legible en el terminal.
Introducción
El 12 de septiembre de 2024, OpenAI lanzó su nueva serie de modelos de IA, denominada OpenAI o1. Estos modelos están diseñados para realizar un razonamiento profundo antes de proporcionar una respuesta, lo que les permite resolver problemas complejos en ciencia, codificación y matemáticas. El modelo o1-preview sobresale particularmente en estos campos, superando a modelos anteriores como gpt-4o.
Puntos clave del script:
- Integración del modelo o1-preview: El script utiliza el modelo o1-preview por defecto, ofreciendo así capacidades avanzadas de razonamiento.
- Web scraping integrado: Puede extraer el contenido de páginas web para enriquecer el contexto del prompt.
- Gestión de expresiones LaTeX: Las expresiones matemáticas en las respuestas se convierten en texto Unicode para una fácil lectura en el terminal.
- Personalizable: El script permite elegir el modelo de OpenAI y puede adaptarse a diversos casos de uso.
En este artículo, detallaré el código del script, explicaré cómo funciona y realizaré una serie de prompts complejos.
Requisitos
Antes de comenzar, asegúrese de tener lo siguiente:
- Python 3.x instalado en su máquina.
- Una clave API de OpenAI. Puede obtenerla registrándose en el sitio de OpenAI.
- Un entorno virtual de Python (recomendado para aislar las dependencias).
- Los módulos de Python necesarios.
Configuración del entorno virtual
Para aislar las dependencias de este proyecto, se recomienda utilizar un entorno virtual. Aquí se explica cómo crear uno e instalar las dependencias requeridas:
python3 -m venv env
source env/bin/activate # Sur Windows, utilisez env\Scripts\activate
pip install openai selenium webdriver-manager pylatexenc
Definir la clave API de OpenAI
Defina su clave API de OpenAI como una variable de entorno:
export OPENAI_API_KEY='votre_clé_api_ici'
Reemplace 'votre_clé_api_ici'
por su clave API real.
El código completo del script
Aquí está el código completo del script de Python:
#!/usr/bin/env python3
import os
import sys
import argparse
import re
from openai import OpenAI
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from pylatexenc.latex2text import LatexNodes2Text
def get_web_content(url):
if not url:
return ""
try:
# Configure les options de Chrome
chrome_options = Options()
# Ne pas utiliser le mode headless pour éviter les problèmes de vérification humaine
# Utilise ChromeDriverManager pour gérer l'installation de ChromeDriver
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=chrome_options
)
# Charge la page web
driver.get(url)
# Récupère le contenu textuel de la page
web_content = driver.execute_script("return document.documentElement.innerText")
# Ferme le navigateur
driver.quit()
return web_content if web_content else None
except Exception as e:
return None
def convert_latex_to_text(latex_str):
# Convertit les expressions LaTeX en texte Unicode
return LatexNodes2Text().latex_to_text(latex_str)
def clean_output(content):
# Trouve toutes les expressions LaTeX dans le contenu et les convertit
patterns = [r"\\\[.*?\\\]", r"\\\(.*?\\\)", r"\$\$.*?\$\$", r"\$.*?\$"]
for pattern in patterns:
matches = re.findall(pattern, content, flags=re.DOTALL)
for match in matches:
plain_text = convert_latex_to_text(match)
content = content.replace(match, plain_text)
return content
def get_response(prompt, client, model="o1-preview"):
urls = re.findall(r"(https?://\S+)", prompt)
for url in urls:
web_content = get_web_content(url)
if web_content:
prompt = prompt.replace(url, web_content)
else:
return f"Erreur: Le contenu web pour {url} ne peut être récupéré."
try:
response = client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": prompt,
},
],
)
first_choice_message = response.choices[0].message
content = first_choice_message.content
# Convertit les expressions LaTeX en texte lisible
cleaned_content = clean_output(content)
return cleaned_content
except Exception as e:
return f"Une erreur est survenue : {e}"
def main():
parser = argparse.ArgumentParser()
parser.add_argument("prompt", nargs="?", help="Le prompt contenant des URLs")
parser.add_argument(
"--model",
default="o1-preview",
choices=["gpt-4o", "o1-preview", "o1-mini"],
help="Le modèle OpenAI à utiliser (par défaut o1-preview)",
)
args = parser.parse_args()
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError(
"La clé API OPENAI_API_KEY n'est pas définie dans les variables d'environnement."
)
with OpenAI(api_key=openai_api_key) as client:
prompt = args.prompt or sys.stdin.read()
response = get_response(prompt, client, model=args.model)
print(response)
if __name__ == "__main__":
main()
Explicación del código
Importación de los módulos necesarios
El script comienza importando los módulos esenciales:
- os, sys, argparse, re: Módulos estándar para gestionar variables de entorno, argumentos de línea de comandos y expresiones regulares.
- openai: Módulo para interactuar con la API de OpenAI.
- selenium y webdriver_manager: Para realizar web scraping.
- pylatexenc: Para convertir expresiones LaTeX en texto Unicode legible.
Función get_web_content
Esta función recupera el contenido textual de una página web.
def get_web_content(url):
if not url:
return ""
try:
# Configure les options de Chrome
chrome_options = Options()
# Ne pas utiliser le mode headless pour éviter les problèmes de vérification humaine
# Utilise ChromeDriverManager pour gérer l'installation de ChromeDriver
driver = webdriver.Chrome(
service=Service(ChromeDriverManager().install()), options=chrome_options
)
# Charge la page web
driver.get(url)
# Récupère le contenu textuel de la page
web_content = driver.execute_script("return document.documentElement.innerText")
# Ferme le navigateur
driver.quit()
return web_content if web_content else None
except Exception as e:
return None
Puntos clave:
- Opciones de Chrome: El script no utiliza el modo headless para evitar problemas de verificación humana que algunas páginas imponen a los navegadores en modo headless.
- ChromeDriverManager: Gestiona automáticamente la instalación y actualización de ChromeDriver.
- Extracción del contenido: Utiliza JavaScript para extraer el texto completo de la página.
- Gestión de excepciones: En caso de error, la función devuelve
None
.
Función convert_latex_to_text
Esta función convierte las expresiones LaTeX en texto Unicode.
def convert_latex_to_text(latex_str):
# Convertit les expressions LaTeX en texte Unicode
return LatexNodes2Text().latex_to_text(latex_str)
Puntos clave: - Utilice la biblioteca pylatexenc
para convertir las expresiones LaTeX, haciendo las fórmulas matemáticas legibles en el terminal.
Función clean_output
Esta función procesa la respuesta del modelo para convertir las expresiones LaTeX.
def clean_output(content):
# Trouve toutes les expressions LaTeX dans le contenu et les convertit
patterns = [r"\\\[.*?\\\]", r"\\\(.*?\\\)", r"\$\$.*?\$\$", r"\$.*?\$"]
for pattern in patterns:
matches = re.findall(pattern, content, flags=re.DOTALL)
for match in matches:
plain_text = convert_latex_to_text(match)
content = content.replace(match, plain_text)
return content
Puntos clave:
- Búsqueda de expresiones LaTeX: Utiliza expresiones regulares para identificar las fórmulas.
- Conversión: Cada fórmula se convierte en texto Unicode.
- Reemplazo: Las fórmulas LaTeX son reemplazadas por su equivalente legible.
Función get_response
Prepara el prompt, maneja el web scraping si es necesario, llama a la API de OpenAI y limpia la respuesta.
def get_response(prompt, client, model="o1-preview"):
urls = re.findall(r"(https?://\S+)", prompt)
for url in urls:
web_content = get_web_content(url)
if web_content:
prompt = prompt.replace(url, web_content)
else:
return f"Erreur: Le contenu web pour {url} ne peut être récupéré."
try:
response = client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": prompt,
},
],
)
first_choice_message = response.choices[0].message
content = first_choice_message.content
# Convertit les expressions LaTeX en texte lisible
cleaned_content = clean_output(content)
return cleaned_content
except Exception as e:
return f"Une erreur est survenue : {e}"
Puntos clave:
- Gestión de URLs: Si el prompt contiene URLs, el contenido se extrae y se inserta.
- Llamada a la API de OpenAI: Envía el prompt modificado al modelo especificado.
- Limpieza de la respuesta: Las expresiones LaTeX se convierten para facilitar la lectura.
Función main
Maneja los argumentos de línea de comandos y ejecuta el script.
def main():
parser = argparse.ArgumentParser()
parser.add_argument("prompt", nargs="?", help="Le prompt contenant des URLs")
parser.add_argument(
"--model",
default="o1-preview",
choices=["gpt-4o", "o1-preview", "o1-mini"],
help="Le modèle OpenAI à utiliser (par défaut o1-preview)",
)
args = parser.parse_args()
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
raise ValueError(
"La clé API OPENAI_API_KEY n'est pas définie dans les variables d'environnement."
)
with OpenAI(api_key=openai_api_key) as client:
prompt = args.prompt or sys.stdin.read()
response = get_response(prompt, client, model=args.model)
print(response)
Puntos clave:
- Argumentos: El script acepta un prompt y un modelo como argumentos.
- Clave API: Verifica que la clave API esté definida.
- Ejecución: Llama a la función
get_response
y muestra la respuesta.
Ejecución del script
if __name__ == "__main__":
main()
Ejemplos de uso
Plantear una pregunta que requiera razonamiento
./openai_poc.py "Dans un triangle rectangle, si les côtés adjacents à l'angle droit mesurent 3 cm et 4 cm, calcule la longueur de l'hypoténuse."
Pour calculer la longueur de l'hypoténuse dans un triangle rectangle dont les côtés adjacents à l'angle droit mesurent 3 cm et 4 cm, nous utilisons le théorème de Pythagore :
Hypoténuse^2 = (Côté 1)^2 + (Côté 2)^2
En remplaçant par les valeurs données :
Hypoténuse^2 = 3^2 + 4^2
Hypoténuse^2 = 9 + 16
Hypoténuse^2 = 25
En prenant la racine carrée des deux côtés :
Hypoténuse = √(25)
Hypoténuse = 5 cm
**Donc, la longueur de l'hypoténuse est de 5 cm.**
La longueur de l’hypoténuse est 5 cm.
Generar un resumen de una página web
./openai_poc.py "Fais-moi un résumé de cette page : https://openai.com/index/introducing-openai-o1-preview/"
OpenAI a annoncé le 12 septembre 2024 l'introduction d'une nouvelle série de modèles d'IA appelée **OpenAI o1**, conçue pour prendre plus de temps pour réfléchir avant de répondre. Ces modèles sont capables de raisonner à travers des tâches complexes et de résoudre des problèmes plus difficiles que les modèles précédents en science, en codage et en mathématiques.
Le premier modèle de cette série, **o1-preview**, est désormais disponible sur ChatGPT et via l'API d'OpenAI. Une version plus légère et plus économique, appelée **OpenAI o1-mini**, est également proposée, offrant des capacités de codage efficaces à un coût réduit de 80% par rapport à o1-preview.
Ces modèles ont été entraînés pour affiner leur processus de pensée, essayer différentes stratégies et reconnaître leurs erreurs, ce qui leur permet d'obtenir des performances remarquables. Par exemple, lors d'un examen qualificatif pour l'Olympiade Internationale de Mathématiques, le modèle de raisonnement a résolu correctement 83% des problèmes, contre seulement 13% pour GPT-4o. En codage, ils ont atteint le 89e percentile dans les compétitions Codeforces.
OpenAI a également mis en place une nouvelle approche d'entraînement en matière de sécurité, permettant aux modèles d'appliquer plus efficacement les directives de sécurité et d'alignement en raisonnant sur ces règles dans le contexte. Ils collaborent étroitement avec les instituts de sécurité de l'IA aux États-Unis et au Royaume-Uni pour tester et évaluer ces modèles avant et après leur diffusion publique.
Les modèles o1 sont particulièrement utiles pour ceux qui travaillent sur des problèmes complexes en science, codage, mathématiques et domaines similaires. Ils sont disponibles pour les utilisateurs de ChatGPT Plus et Team, avec des limites hebdomadaires de messages, et seront accessibles aux utilisateurs de ChatGPT Enterprise et Edu. Les développeurs éligibles peuvent également commencer à les utiliser via l'API.
OpenAI prévoit d'ajouter prochainement des fonctionnalités supplémentaires à ces modèles, telles que la navigation sur le web et le téléchargement de fichiers et d'images, tout en continuant à développer et à publier des modèles dans la série GPT en parallèle de la nouvelle série OpenAI o1.
Resolver una multiplicación simple
./openai_poc.py "Quel est le résultat de 15 x 12 ?"
Le résultat de 15 × 12 est **180**.
Resolver una ecuación simple
./openai_poc.py "Résous l'équation 2x + 5 = 15."
Pour résoudre l'équation 2x + 5 = 15, suivez les étapes suivantes :
1. **Soustraire 5 des deux côtés de l'équation** pour isoler le terme avec la variable :
2x + 5 - 5 = 15 - 5
2x = 10
2. **Diviser les deux côtés de l'équation par 2** pour résoudre pour x :
2x/2 = 10/2
x = 5
**Solution :** x = 5.
Calcular un porcentaje
./openai_poc.py "Quel est 20% de 250 ?"
20 % de 250 est égal à **50**.
**Calcul :**
20%× 250 = ( 20100) × 250 = 0,2 × 250 = 50.
Calcular el área de un círculo
./openai_poc.py "Calcule l'aire d'un cercle de rayon 5 cm."
Pour calculer l'aire d'un cercle de rayon 5 cm, utilise la formule de l'aire d'un cercle :
A = π r^2
où :
- A est l'aire du cercle,
- r est le rayon du cercle.
En remplaçant r par 5 cm :
A = π (5 cm)^2
= π (25 cm^2)
= 25π cm^2
Donc, l'aire du cercle est **25π cm^2**.
Si tu souhaites une valeur approchée, en utilisant π≈ 3,1416 :
A ≈ 25 × 3,1416 cm^2
≈ 78,54 cm^2
Ainsi, l'aire du cercle est approximativement **78,54 cm²**.
Calcular una integral simple
./openai_poc.py "Calcule l'intégrale de 0 à 1 de x^2 dx."
Pour calculer l'intégrale de 0 à 1 de la fonction x^2, nous allons intégrer x^2 par rapport à x et évaluer l'expression obtenue entre les bornes 0 et 1.
**Étapes du calcul :**
1. **Intégration de la fonction x^2 :**
∫ x^2 dx = x^33 + C
où C est la constante d'intégration.
2. **Évaluation entre les bornes 0 et 1 :**
∫_0^1 x^2 dx = [ x^33]_0^1 = ( 1^33) - ( 0^33)
3. **Calcul des valeurs aux bornes :**
1^33 = 13 et 0^33 = 0
4. **Soustraction des valeurs pour obtenir le résultat final :**
∫_0^1 x^2 dx = 13 - 0 = 13
**Conclusion :**
La valeur de l'intégrale de 0 à 1 de x^2 dx est donc :
∫_0^1 x^2 dx = 13
Calcular una velocidad media
./openai_poc.py "Si une voiture parcourt 150 km en 3 heures, quelle est sa vitesse moyenne ?"
Pour calculer la vitesse moyenne d'une voiture qui parcourt 150 km en 3 heures, on utilise la formule de la vitesse moyenne :
Vitesse moyenne = Distance totaleTemps total
En appliquant les valeurs données :
Vitesse moyenne = 150 km3 heures = 50 km/h
**La vitesse moyenne de la voiture est donc de 50 km/h.**
Mecánica clásica
./openai_poc.py "Un bloc de 5 kg est tiré sur une surface sans frottement par une force de 20 N. Calcule son accélération."
Pour calculer l'accélération du bloc, nous utilisons la deuxième loi de Newton, qui stipule que la force résultante agissant sur un objet est égale à la masse de l'objet multipliée par son accélération (F = m × a).
Étant donné :
- Masse du bloc, m = 5 kg
- Force appliquée, F = 20 N
- Surface sans frottement (donc aucune force opposée due au frottement)
En réarrangeant la formule pour résoudre pour l'accélération (a), nous obtenons :
a = F/m
En remplaçant les valeurs données :
a = 20 N/5 kg
a = 4 m/s^2
**Réponse : L’accélération du bloc est de 4 mètres par seconde au carré (4 m⁄s²).**
Resolución de ecuaciones diferenciales
./openai_poc.py "Résous l'équation différentielle dy/dx = x^2 + y^2 avec la condition initiale y(0) = 1."
Pour résoudre l'équation différentielle :
dy/dx = x^2 + y^2
avec la condition initiale y(0) = 1, nous notons que cette équation est non linéaire et ne peut pas être résolue par les méthodes élémentaires telles que la séparation des variables ou les facteurs intégrants standard. Cependant, nous pouvons tenter de transformer l'équation en une forme plus soluble.
**Étape 1 : Reconnaître la nature de l'équation**
L'équation donnée est une équation différentielle de Riccati qui a la forme générale :
dy/dx = q_0(x) + q_1(x) y + q_2(x) y^2
Dans notre cas, elle s'écrit :
dy/dx = x^2 + 0 · y + 1 · y^2
**Étape 2 : Transformer l'équation en une équation linéaire de second ordre**
Pour résoudre une équation de Riccati, on peut utiliser la substitution suivante :
y = -u'/u
où u = u(x) est une fonction à déterminer, et u' est la dérivée de u par rapport à x.
**Calcul de y' en fonction de u :**
y = -u'/u
y' = -d/dx( u'/u)
Appliquons la règle de dérivation du quotient :
y' = -( u”· u - (u')^2/u^2)
**Étape 3 : Substituer dans l'équation initiale**
Substituons y et y' dans l'équation différentielle originale :
y' = x^2 + y^2
-( u”· u - (u')^2/u^2) = x^2 + ( -u'/u)^2
Simplifions l'équation :
-( u” u - (u')^2/u^2) = x^2 + (u')^2/u^2
-u” u - (u')^2/u^2 = x^2 + (u')^2/u^2
Maintenant, multiplions les deux membres par u^2 pour éliminer les dénominateurs :
-( u” u - (u')^2 ) = x^2 u^2 + (u')^2
Simplifions :
-u” u + (u')^2 = x^2 u^2 + (u')^2
-u” u = x^2 u^2
u” u = -x^2 u^2
Divisons par u (en supposant u ≠ 0) :
u” = -x^2 u
**Étape 4 : Résoudre l'équation linéaire de second ordre**
Nous obtenons ainsi une équation différentielle linéaire homogène de second ordre :
u” + x^2 u = 0
Cette équation est une équation différentielle linéaire avec des coefficients variables. Elle est connue sous le nom d'équation d'Airy modifiée. Les solutions de cette équation ne sont pas exprimables en termes de fonctions élémentaires, mais sont données en termes des fonctions spéciales appelées fonctions d'Airy.
**Solutions de l'équation :**
Les solutions générales de l'équation u” + x^2 u = 0 sont :
u(x) = C_1 ·Ai(i x) + C_2 ·Bi(i x)
où Ai et Bi sont les fonctions d'Airy de première et seconde espèce, et i est l'unité imaginaire telle que i^2 = -1.
**Étape 5 : Revenir à y(x)**
Rappelons que :
y = -u'/u
En connaissant u(x), nous pouvons trouver y(x) en calculant la dérivée de u et en effectuant le quotient.
**Étape 6 : Appliquer la condition initiale**
Pour déterminer les constantes d'intégration C_1 et C_2, nous devons appliquer la condition initiale y(0) = 1. Cependant, étant donné la complexité des fonctions d'Airy avec des arguments complexes, le calcul explicite est délicat.
**Conclusion**
La solution de l'équation différentielle donnée avec la condition initiale y(0) = 1 est exprimée en termes des fonctions spéciales (fonctions d'Airy). Elle ne peut pas être écrite en termes de fonctions élémentaires telles que les polynômes, les exponentielles, les sinus ou les cosinus.
**Réponse finale :**
La solution de l'équation différentielle dy/dx = x^2 + y^2 avec y(0) = 1 est donnée implicitement en termes des fonctions d'Airy, et ne peut pas être exprimée explicitement avec des fonctions élémentaires.
Electromagnetismo
./openai_poc.py "Calcule le champ électrique à une distance r d'une charge ponctuelle Q."
Le champ électrique E créé par une charge ponctuelle Q à une distance r est donné par la loi de Coulomb. La formule pour calculer le champ électrique est :
E = 14πε_0×Qr^2
où :
- E est le champ électrique (en volts par mètre, V/m),
- Q est la charge ponctuelle (en coulombs, C),
- r est la distance à la charge (en mètres, m),
- ε_0 est la permittivité du vide, avec une valeur approximative de 8,854 × 10^-12 C^2/N·m^2.
**Exemple de calcul :**
Supposons que vous ayez une charge Q = 2 × 10^-6 C (2 microcoulombs) et que vous souhaitiez calculer le champ électrique à une distance r = 0,5 m.
1. **Calculez la constante devant la fraction :**
14πε_0 = 14π× 8,854 × 10^-12≈ 8,988 × 10^9 N·m^2/C^2
2. **Appliquez la formule :**
E = (8,988 × 10^9) ×2 × 10^-6(0,5)^2
E = (8,988 × 10^9) ×2 × 10^-60,25
E = (8,988 × 10^9) × 8 × 10^-6
E = 71,904 V/m
**Conclusion :**
Le champ électrique à une distance de r = 0,5 m d'une charge ponctuelle de Q = 2 × 10^-6 C est de E = 71,904 V/m.
Ainsi, pour calculer le champ électrique à une distance donnée d'une charge ponctuelle, utilisez la formule ci-dessus en remplaçant Q et r par les valeurs spécifiques du problème.
Equilibrio químico
./openai_poc.py "Explique comment le principe de Le Chatelier s'applique à l'équilibre suivant : N2 + 3H2 ⇌ 2NH3."
Le principe de Le Chatelier stipule que, lorsqu'un système en équilibre est soumis à une modification (stress) externe, il réagit de manière à minimiser cette perturbation et à établir un nouvel équilibre. Appliqué à l'équilibre chimique suivant :
N_2(g) + 3H_2(g) ↔ 2NH_3(g)
on peut analyser comment différentes modifications influencent la position de l'équilibre.
**1. Variation de la concentration :**
- **Augmentation de la concentration de réactifs (N₂ ou H₂) :** Si l'on ajoute du diazote (N₂) ou du dihydrogène (H₂) au système, la concentration de ces réactifs augmente. Selon le principe de Le Chatelier, l'équilibre se déplacera dans le sens qui consomme ces réactifs supplémentaires, c'est-à-dire vers la droite, favorisant la formation d'ammoniac (NH₃).
- **Diminution de la concentration de produits (NH₃) :** Si l'on retire de l'ammoniac du système, la concentration de NH₃ diminue. L'équilibre se déplacera alors vers la droite pour compenser cette diminution, favorisant à nouveau la formation d'ammoniac.
- **Augmentation de la concentration de produits (NH₃) :** Si l'on ajoute de l'ammoniac au système, l'équilibre se déplacera vers la gauche pour réduire l'excès de NH₃, favorisant la formation de N₂ et H₂.
**2. Variation de la pression :**
- **Augmentation de la pression totale du système :** Pour les gaz, une augmentation de la pression (par diminution du volume) favorise la réaction qui produit le moins de moles gazeuses. Dans cette réaction, on passe de 4 moles de gaz (1 N₂ + 3 H₂) à 2 moles de gaz (2 NH₃). Donc, l'augmentation de la pression déplace l'équilibre vers la droite, favorisant la formation d'ammoniac.
- **Diminution de la pression totale du système :** Inversement, une diminution de la pression favorisera la réaction produisant le plus de moles gazeuses, déplaçant l'équilibre vers la gauche et favorisant la dissociation de NH₃ en N₂ et H₂.
**3. Variation de la température :**
- **Nature exothermique de la réaction :** La synthèse de l'ammoniac est une réaction exothermique (Δ H < 0), c'est-à-dire qu'elle libère de la chaleur.
- **Augmentation de la température :** En augmentant la température, on apporte de la chaleur au système. Selon le principe de Le Chatelier, l'équilibre se déplacera dans le sens qui absorbe cette chaleur supplémentaire, donc vers la gauche (réaction endothermique), favorisant la dissociation de NH₃ en N₂ et H₂.
- **Diminution de la température :** En abaissant la température, le système réagit en produisant de la chaleur pour compenser cette perte. L'équilibre se déplace donc vers la droite (réaction exothermique), favorisant la formation d'ammoniac.
**4. Présence d'un catalyseur :**
- **Effet du catalyseur :** L'ajout d'un catalyseur (comme le fer finement divisé avec des promoteurs) augmente la vitesse à laquelle l'équilibre est atteint, mais ne modifie pas la position de l'équilibre. Il accélère à la fois les réactions directe et inverse de manière égale.
**Résumé :**
Le principe de Le Chatelier permet de prédire la direction dans laquelle un équilibre chimique se déplacera en réponse à une modification des conditions du système. Pour la synthèse de l'ammoniac :
- **Pression élevée** favorise la formation de NH₃ (moins de moles gazeuses).
- **Température basse** favorise la formation de NH₃ (réaction exothermique).
- **Augmentation des concentrations de N₂ ou H₂** favorise la formation de NH₃.
- **Retrait de NH₃** du système favorise la formation de plus de NH₃.
Ces principes sont appliqués dans le procédé Haber-Bosch pour optimiser la production industrielle d'ammoniac.
Conclusión
Este script de Python ofrece una integración práctica del modelo OpenAI o1-preview, permitiendo explotar sus capacidades de razonamiento avanzadas para una amplia gama de preguntas, desde las más simples hasta las más complejas. Ya sea que seas un principiante curioso o un experto que busca probar los límites del modelo, este script es una herramienta divertida para tus proyectos de inteligencia artificial.
Recursos
- Anuncio del modelo OpenAI o1-preview
- Documentación oficial de la API de OpenAI
- Documentación de Selenium
- Documentación de pylatexenc
- Guía sobre entornos virtuales en Python
Este documento ha sido traducido de la versión fr a la lengua es utilizando el modelo gpt-4o. Para más información sobre el proceso de traducción, consulte https://gitlab.com/jls42/ai-powered-markdown-translator